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a b s t r a c t

Thermal boundary conditions have played an increasingly important role in revealing the nature of
short-range spin glasses and is likely to be relevant also for other disordered systems. Diffusion method
initializing each replica with a random boundary condition at the infinite temperature using population
annealing has been used in recent large-scale simulations. However, the efficiency of this method can
be greatly suppressed because of temperature chaos. For example, most samples have some boundary
conditions that are completely eliminated from the population in the process of annealing at low
temperatures. In this work, I study a weighted average method to solve this problem by simulating
each boundary conditions separately and collect data using weighted averages. The efficiency of the two
methods is studied using both population annealing and parallel tempering, showing that the weighted
average method is more efficient and accurate.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Thermal boundary conditions (TBC) include the set of all combi-
nations of periodic/antiperiodic boundary conditions in each spa-
tial dimension [1–3]. For example in three dimensions (d = 3),
there are 2d

= 8 possible choices. Each boundary condition i occurs
in the thermal ensemble with weight pi depends on its free energy
Fi as pi = exp[−β(Fi − F)], where F is the total free energy of the
system in TBC and β is the inverse temperature. TBC was initially
motivated to reduce domain-wall effects in spin glasses [1] and
was later shown to be useful in studying temperature chaos and
bond chaos via boundary condition crossings, i.e, the weights {pi}
change chaotically as a function of temperature or couplings [2,3].
Previously, thermal boundary conditions were used with exact
algorithms for finding ground states of two-dimensional spin
glasses [4,5] (referred to as ‘‘extended’’ boundary conditions). A re-
stricted version of thermal boundary conditions using periodic and
anti-periodic boundary conditions in a single direction (a subset of
TBC) was also used in Refs. [6–9].

Simulating the full TBC ensemble in Refs. [1–3] was done
using population annealing (PA) [10–13]. See Ref. [14] for a recent
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discussion of the algorithm. Population annealing works with a
population of replicas and aims to maintain thermal equilibrium
while lowering the temperature. When temperature is decreased,
the population is resampled according to the Boltzmannweights of
the replicas, followed by regularMonte Carlo sweeps to all replicas
in the population. In this work, the Metropolis algorithm is used.
Simulating TBC using the diffusion method with PA is very simple.
One can initialize each replica with a random boundary condition
at β = 0 and then boundary conditions are resampled along with
the replicas. The word ‘‘diffusion’’ would become apparent when
one implements the method in parallel tempering, as discussed in
Section 2.3.

It was noticed in Refs. [1,2] that the efficiency of the diffusion
method can be greatly suppressed by temperature chaos. Some
boundary conditions can be totally removed from the population.
This is not satisfactory as there is no mechanism to recover
these lost boundary conditions once they are eliminated from
the population. Furthermore, temperature chaos predicts that
these boundary conditions could become important again at lower
temperatures. Therefore, it is worth studying a new method that
does not have this problem. The most natural way is to simulate
each boundary condition separately and combine the observables
usingweighted averageswith free energy. How toweight different
kinds of observables is discussed in Section 2.4. Since it is also
interesting to study the performance of parallel tempering (PT) in
simulating the full set of thermal boundary conditions, the two
methods are therefore studied in both PA and PT.
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The paper is organized as follows: Section 2 introduces the
Edwards–Anderson model, measured quantities, the diffusion
method and the weighted average method. Numerical results are
shown in Section 3, followed by concluding remarks and future
challenges in Section 4.

2. Models, observables and methods

2.1. The Edwards–Anderson model

The Edwards–Anderson (EA) Hamiltonian is defined as

H = −


⟨ij⟩

JijSiSj, (1)

where {Si = ±1} are the spin degrees of freedom defined on a
three-dimensional cubic lattice. The sum over ⟨ij⟩ means sum over
all nearest neighbors. Jij is the coupling between spins Si and Sj and
all couplings are independently chosen from the standardGaussian
distribution with mean 0 and variance 1. Thermal boundary
conditions are applied to all instances.

2.2. Observables

There are three classes of observables that need to be treated
differently using weighted averages. The first class is observables
that are functions of a single replica like the energy E or
the magnetization m. The second class is the thermodynamic
observables of the free energy F and the entropy S. There is a
third class of observables in spin glasses due to the nature of the
symmetry breaking which is functions of two replicas like the spin
overlap q defined as

qab =
1
N


i

Sai S
b
i , (2)

where micro-states a, b are chosen independently from the
Boltzmanndistribution. Note that a, b can be chosen from the same
boundary conditions or different boundary conditions. Another
quantity in this class is the link overlap which needs some care in
the definition due to the change of boundary conditions, the link
overlap qℓ is defined as

qℓab =
1
dN


⟨ij⟩

Sai sign(Jaij)S
a
j S

b
i sign(Jbij)S

b
j , (3)

where the sign function is ±1 depends on whether the argument
is positive or negative respectively. The definition has nothing to
do with the weighted average method, but this is a more useful
definition in the TBC setting for studying the nature of spin glasses.
In this way, the difference of the link overlap of two different
boundary conditions arises only from the domain walls, not from
a mixture of domain walls and boundary condition differences. In
the following, Iwill focus on the spin overlap function andwill refer
to it as the overlap function where no confusion arises. Note also
that there is a 8 × 8 overlap function matrix in the TBC ensemble.
An important statistic I , which quantifies the weight of an overlap
distribution near q = 0, is defined as

I =

 0.2

−0.2
P(q)dq, (4)

where P(q) is an overlap distribution function.

2.3. The diffusion method

We have already discussed the diffusion method in population
annealing, which initializes each replica with a random boundary
condition at β = 0. For completeness, I also introduce and

study the diffusion method in parallel tempering because parallel
tempering is widely used in spin-glass simulations. Following the
same strategy, one can simulate the TBC using parallel tempering
by generating random states with random boundary conditions
at β = 0. Then the boundary conditions diffuse along with the
replicas under the swap moves of parallel tempering, hence the
name the diffusion method. The convenience of working with
β = 0 is because proposing a boundary condition change at
finite temperatures can be costly as many bonds are affected when
boundary condition changes. Furthermore, this is also essential to
measure the absolute free energy.

The implementation of this method is simple and detailed
balance is satisfied. However, the efficiency of the method still
needs to be studied. Since in this method, PA and PT work
in a similar way, one may expect that PT should suffer from
temperature chaos too. This turns out to be the case as discussed in
Sections 3.1 and 3.2. The effect of boundary condition eliminations
in PA is replaced by one or more diffusion bottlenecks in PT. In the
next, I discuss the weighted average method, which does not have
this problem.

2.4. The weighted average method

It was shown that the absolute free energy can be measured
very accurately using the free energy perturbation method in both
population annealing and parallel tempering [11,15]. It can be
shown from statisticalmechanics that the average energy, entropy,
free energy and the spin overlap distribution should be averaged as

E =


i

Eipi, (5)

S =


i

Sipi −


i

pi log pi, (6)

F =


i

Fipi + T


i

pi log pi, (7)

P(q) =


ij

Pij(q)pipj, (8)

where pi =
e−βFi
j e

−βFj
, Ei, Si and Fi are the energy, entropy and free

energy of boundary condition i and Pij(q) is the overlap distribution
between the boundary conditions i and j.

It is worth noting that the weighted average method generates
a lotmore information than the diffusionmethod. For example, the
overlapmatrix is briefly discussed in Section 4. For now,we discuss
briefly of the implementation of the weighted average method
in PA and PT. In the weighted average method, each boundary
condition is simulated independently. It is only when computing
the spin overlaps that one needs communications between replicas
with different boundary conditions. Therefore, in this way, PT
can be simulated using parallel computing too. Since it is usually
a practice to simulate two independent sets of replicas of each
boundary condition, one can use 8 or 16 threads in the simulation.
This is not doable in the diffusionmethod of PT. On the other hand,
PA is intrinsically parallel and is also much more flexible with the
number of threads. Inmy simulations, I have used OpenMP parallel
computing for both PA and PT. For the equilibrationmeasure of PA,
one can either use the weighted average or the minimum of the
entropy of families [14] of all boundary conditions.

3. Results

In this section, I investigate the performance of the diffusion
method and the weighted average method. I first compare PA and
PT for the diffusion method in Section 3.1. The conclusion is that
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