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We study the electromechanical behavior of a thin interphase, constituted by a piezoelec-
tric anisotropic shell-like thin layer, embedded between two generic three-dimensional 
piezoelectric bodies by means of the asymptotic analysis in a general curvilinear frame-
work. After defining a small real dimensionless parameter ε, which will tend to zero, we 
characterize two different limit models and their associated limit problems, the so-called 
weak and strong piezoelectric curved interface models, respectively. Moreover, we identify 
the non-classical electromechanical transmission conditions at the interface between the 
two three-dimensional bodies.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Smart materials have been used over the past few decades in several applications in all fields of aeronautical, mechan-
ical, and civil engineering. For what concerns smart structures, the strain state is constantly under control by means of 
sensors and actuators, usually made of piezoelectric materials, integrated within the structure. The more and more promis-
ing applications of piezoelectric composites have lead researchers to develop new methods and analysis tools for a better 
understanding of the mechanisms and behaviors of such structures, which are subjected to electromechanical interactions. 
More often, the piezoelectric actuators are obtained by alternating different thin layers of material with highly contrasted 
electromechanical properties. This generates different types of complex composites, in which each phase interacts with the 
others.

The asymptotic methods have been successfully applied for the mathematical justification of thin structure models in 
both fields of elasticity and piezoelectricity, taking into account also thermal and magnetic effects (see, e.g., [1–3]): this 
has stimulated researchers to tunnel their efforts toward a formal simplification of the modeling of complex structures 
obtained by joining elements presenting highly contrasted geometrical and mechanical properties. A thin interphase inserted 
between two generic media can be considered as the most distinctive bonded joint. The asymptotic expansions method 
allows one to replace the original problem with a reduced transmission problem, in which the thin interphase is substituted 
by a two-dimensional material surface, i.e. a so-called imperfect interface, between the two three-dimensional bodies with 
non-classical transmission conditions. Within the theory of elasticity, the asymptotic analysis of a thin elastic interphase 
between two elastic materials has been deeply investigated through the years, by varying the rigidity ratios between the
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Fig. 1. The geometry of the composite: configuration in the curvilinear coordinates system.

thin inclusion and the surrounding materials and by considering different geometry features (see, e.g., [4–7], within the 
theory of elasticity, and see [8,9], within the theory of piezoelectricity, including also thermal and magnetic couplings).

This work is conceived as the curvilinear generalization of a previous work [8] on asymptotic planar weak and strong 
piezoelectric interface models. In the present work, we identify two different interface limit models of a piezoelectric as-
sembly constituted by a thin piezoelectric shell-like layer inserted between two generic piezoelectric bodies by means of an 
asymptotic analysis in a general curvilinear framework. By defining a small real parameter ε, associated with the thickness 
and the electromechanical properties of the middle layer, we perform an asymptotic analysis by letting ε tend to zero. We 
analyze two different situations by varying the electromechanical stiffness ratios between the middle layer and the adher-
ents: namely, the weak piezoelectric curved interface, where the electromechanical coefficients of the intermediate domain 
have order of magnitude ε with respect to those of the surrounding bodies, the strong piezoelectric curved interface, where 
the electromechanical rigidities have order of magnitude 1

ε . Within the reduced models, the interphase is replaced by a 
material surface (strong case) or a constraint (weak case) whose energy, in both cases, is the limit of the interphase energy. 
This surface energy is then translated in ad hoc transmission conditions at the interface.

The paper is organized as follows. In Sect. 2, we define the position of the problem and we perform the asymptotic 
analysis of the problem. In Sect. 3 and Sect. 4, we deduce, respectively, the two limit interface models. Finally, we discuss 
the results and propose some future developments in the concluding remarks in Sect. 5.

2. Position of the problem and asymptotic expansions

Let �+ and �− be two disjoint open domains with smooth boundaries ∂�+ and ∂�− . Let ω := {
∂�+ ∩ ∂�−}◦

be 
the interior of the common part of the boundaries which is assumed to be a non-empty domain in R2 having a positive 
two-dimensional measure. Let θ ∈ C2(ω; R3) be an immersion such that the two vectors aα(x̃) := ∂αθ(x̃) form the covariant 
basis of the tangent plane to the surface θ (ω) at each point θ(x̃), with x̃ = (xα) ∈ ω; the two vectors aα(x̃), defined by 
the relation aα · aβ = δ

β
α , form the contravariant basis of the tangent plane. Also let a3(x̃) = a3(x̃) := a1(x̃)∧a2(x̃)

|a1(x̃)∧a2(x̃)| be the unit 
normal vector to θ(ω). The covariant and contravariant components aαβ and aαβ of the first fundamental form, the covariant 
and mixed components of the second fundamental form, and the Christoffel symbols of the surface are respectively defined 
by: aαβ := aα · aβ , aαβ := aα · aβ , bαβ := a3 · ∂βaα , bβ

α := aβσ bασ and 
σ
αβ := aσ · ∂βaα . The covariant derivative of T αβ are 

defined by T αβ |τ := ∂τ T αβ + 
α
βσ T τσ + 


β
τσ T ασ .

Let 0 < ε < 1 be a dimensionless small real parameter. Let us consider �m,ε := ω × (−εh, εh), S±,ε := ω × {±εh} and 



m,ε
lat := ∂ω × (−εh, εh). Let xε denote the generic point in the set �m,ε

with xε
α = xα . We consider a shell-like domain 

with middle surface θ(ω) and thickness 2εh, whose reference configuration is the image �m,ε(�
m,ε

) ⊂ R
3 of the set �m,ε

through the mapping given by �m,ε(xε) := θ(x̃) + xε
3a3(x̃), for all xε = (x̃, xε

3) ∈ �
m,ε

.

Moreover, we suppose that there exists an immersion �ε : �ε →R
3 defined as follows:

�ε :=
{

�±,ε on �
±,ε

�m,ε on �
m,ε , �±,ε(S±,ε) = �m,ε(S±,ε),

with �±,ε : �
±,ε → R

3 immersions over �±,ε
defining the curvilinear coordinates on �±,ε

, see Fig. 1. We will note by 
gε

i j := (∂ε
i �ε · ∂ε

j �
ε), the covariant components of the metric tensor, with gε := det(gε

i j), 
p,ε
i j , the Christoffel symbols of 

the second kind induced by the metric gε
i j and T ij‖k := ∂k T i j + 
i

� j T
�k + 


j
�k T �i , the covariant derivatives of T ij .

Let (
ε
mD , 
ε

mN) and (
ε
eD , 
ε

eN) be two suitable partitions of ∂�ε := 
±,ε ∪ 

m,ε
lat . The composite is, on the one hand, 

clamped along 
ε
mD and at an electrical potential ϕε

0 = 0 on 
ε
eD and, on the other hand, subject to surface forces gi,ε on 


ε
mN and surface electrical charges dε on 
ε

eN . The assembly is also subject to body forces f i,ε and electrical loadings ρε
e

acting in �±,ε . The work of the external electromechanical loadings in curvilinear coordinates takes the following form:
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