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The theory of dislocation mediated plastic flow proposed by Langer, Bouchbinder, and 

Lookman is applied to compute the stress-strain curve of aluminum over a wide range 

of temperatures and strain rates. The parameter identification by the least squares method 

is provided leading to the excellent agreement with experiment. 
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1. Introduction 

Langer, Bouchbinder, and Lookman (2010) have proposed recently the theory of dislocation mediated plastic flow in met- 

als and alloys, termed LBL-theory for short (see also Langer, 2015, 2016 ). The main feature distinguishing it from all other 

standard theories of plastic flow is the decomposition of the system crystal containing dislocations into configurational and 

kinetic-vibrational subsystems. The configurational degrees of freedom describe the relatively slow, i.e. infrequent, atomic 

rearrangements that are associated with the irreversible movement of dislocations as opposed to the kinetic-vibrational de- 

grees of freedom describing the fast vibrations of the atoms in the lattice. In view of these two different time scales, the 

configurational entropy and temperature characterizing the slow atomic rearrangements due to dislocations should be in- 

troduced in addition to the kinetic-vibrational entropy and temperature. Based on the principles of thermodynamics and 

several plausible arguments these authors proposed the system of equations governing the plastic flow of metals and al- 

loys. They used these equations to simulate the stress-strain curve for copper over fifteen decades of strain rate, and for 

temperatures between room temperature and about one third of the melting temperature. It turns out that only one fit- 

ting parameter is required to get the full agreement with the experiment conducted in Follansbee and Kocks (1988) over 

a wide range of temperatures and strain rates. The successfulness of LBL-theory poses the legitimate question of its ap- 

plicability in the most general case, and, if not, its limit of validity. Langer (2016) wrote: “One way to do that will be 

to repeat the analyses of Langer, Bouchbinder, and Lookman (2010) and Langer (2015) using other sets of experimental 

data, measured for different kinds of materials under different driving conditions”. The aim of this short communica- 

tion is to simulate the stress-strain curves for pure aluminum at different strain rates and different tem peratures using 

the LBL-theory. We identify the parameters involved in the LBL-theory by minimizing the sum of squares of the differ- 

ences between the solution and the experimentally measured stresses. The comparison with the experiments conducted by 
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Shi, McLaren, Sellars, Shahani, and Bolingbroke (1997) and Chen, Stout, Kocks, MacEwen, and Beaudoin (1998) shows again 

excellent agreement confirming the applicability of LBL-theory to aluminum. 

2. Governing equations 

Let us present the governing equations of LBL-theory in the form 

dσ

dε
= μ

[
1 − ˜ q (σ, ˜ ρ) 

˜ q 0 

]
, (1) 

d ̃  χ

dε
= Kσ
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[
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and 

d ̃  ρ

dε
= 

K ρσ

˜ ν(T , ˜ ρ, ̃  q 0 ) 2 
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These are three coupled ordinary differential equations of first order containing three unknowns: the stress σ , the dimen- 

sionless configurational temperature ˜ χ = χ/e D (with e D being the formation energy of dislocations), and the dimensionless 

dislocation density ˜ ρ( ̃  χ) = a 2 ρ(χ ) , where a represents the mean distance between dislocations in the state of maximum 

disorder and infinite configurational temperature which is taken to be 10 b (with b being the Burgers’ vector). They must 

be solved in terms of the strain ε, whose rate ˙ ε is assumed to be constant. The first equation is deduced from Hooke’s 

law in rate form, Orowan’s equation, and the kinetics of thermally activated depinning dislocations, with μ being the shear 

modulus, and 

˜ q (σ, ˜ ρ) = 

√ 

˜ ρ[ f P (σ ) − f P (−σ )] , f P (σ ) = exp 

(
−T P 

T 
e −σ/σT 

)
. 

In the last formula T is the kinetic-vibrational temperature, k B T P characterizes a depinning energy barrier, while σT = μ̄T 

√ 

˜ ρ
is the Taylor stress needed for depinning. The second equation for the configurational temperature is the consequence of the 

first law of thermodynamics, with ˜ χ ss ( ̃  q ) being the steady-state dimensionless configurational temperature. The second term 

in the square brackets of the right-hand side of (2) is proportional to the rate at which heat flows from the configurational to 

the thermal (kinetic-vibrational) degrees of freedom. Since we are in the low strain rate regime with ˜ q � 1 , in the numerical 

simulations we replace ˜ χ ss ( ̃  q ) by ˜ χ ss (0) = ˜ χ0 . The third equation for the dimensionless dislocation density follows from the 

second law of thermodynamics and can be regarded as the equation describing the relaxation to the steady-state dislocation 

density ˜ ρss ( ̃  χ) = e −1 / ̃ χ0 . In this equation 

˜ ν(T , ˜ ρ, ̃  q ) = ln 

(
T P 
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)
− ln 
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ln 
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. 

Finally, Eqs. (1) –(3) should be complemented by the initial conditions 

σ (0) = 0 , ˜ χ(0) = ˜ χini , ˜ ρ(0) = ˜ ρini . (4) 

3. Parameter identification 

In order to simulate the stress-strain curve for aluminum at different strain rates and different temperatures, we need 

to specify the material parameters and initial data involved in (1) –(4) . First, the shear modulus as function of temperature 

should be taken in accordance with the empirical formula ( Varshni, 1970 ) 

μ = μ0 − D 

exp (T 0 /T ) − 1 

, 

where, for pure aluminum, μ0 = 28 . 815 GPa, D = 3 . 44 GPa, T 0 = 215 K ( Chen, Stout, Kocks, MacEwen, & Beaudoin, 1998 ). To 

find the steady state configurational temperature χ0 , the pinning temperature T P , and the Taylor stress σ T (or μ̄T ), assumed 

to be independent of the strain rate, we use three steady state flow stresses σ ss 
i 

measured in experiment at the same 

temperature and different strain rates (see Fig. 1 ) and equations ( Langer, Bouchbinder, & Lookman, 2010 ) 

g i (χ0 , T P , σT ) = 

σ ss 
i 

σT 

− ln 
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T P 
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)
+ ln 

[
1 

2 

ln 

(
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˜ q 2 
0 i 

)]
= 0 , i = 1 , 2 , 3 , (5) 

where ˜ ρss = e −1 / ̃ χ0 and ˜ q 0 i = (a/b) τ0 ̇ εi ( (a/b) τ0 = 10 −12 s). Due to the uncertainties in the steady state stresses, we shall 

not fulfill Eqs. (5) exactly, but minimize instead the sum of squares 

g(χ0 , T P , σT ) = g 2 1 + g 2 2 + g 2 3 
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