Accepted Manuscript

Synthesis and characterization of helium-charged titanium hydride films deposited by direct current magnetron sputtering with mixed gas

Zhibin Han, Chunjie Wang, Liqun Shi

PII:	S0264-1275(17)30061-8
DOI:	doi: 10.1016/j.matdes.2017.01.044
Reference:	JMADE 2685
To appear in:	Materials & Design
Received date:	20 September 2016
Revised date:	11 January 2017
Accepted date:	15 January 2017

Please cite this article as: Zhibin Han, Chunjie Wang, Liqun Shi, Synthesis and characterization of helium-charged titanium hydride films deposited by direct current magnetron sputtering with mixed gas. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Jmade(2017), doi: 10.1016/j.matdes.2017.01.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Synthesis and characterization of helium-charged titanium hydride films

deposited by direct current magnetron sputtering with mixed gas

Zhibin Han^{a,b}, Chunjie Wang^{a,b}, Liqun Shi^{a,b*}

^aApplied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433, PR China

^bDepartment of Nuclear Science and Technology, Fudan University, Shanghai 200433, PR China

Abstract

Controllable helium-containing TiH₂ phase films were prepared on Si (100) substances by magnetron sputtering with hydrogen-helium-argon mixed gas, in order to investigate the helium behavior in titanium tritide. The TiH_xHe films were characterized by ion beam analysis (IBA) in which elastic recoil detection (ERD) and Rutherford backscattering spectrometry (RBS) methods are included, X-ray diffraction (XRD) and scanning electron microscope (SEM). It is found that with the increase in the relative hydrogen flow rate (Q_{H} : Q_{Ar}) under the fixed helium flow and sputtering pressure, the hydrogen concentration in TiH_xHe films increases at first, and then decreases. Though the hydrogen concentration in TiH_xHe films can be greatly increased by increasing the total sputtering pressure, excessive sputtering pressure will deteriorate the crystallization quality. Although the helium concentration mainly relies on the relative helium flow rate of mixed gas during sputtering, the increase of the relative helium flow rate will reduce the concentration of hydrogen in films at fixed sputtering pressure dramatically. Fortunately, suitable relative hydrogen flow

^{*}Corresponding author. Tel.: +86-21-65642292;

E-mail address: lqshi@fudan.edu.cn

Download English Version:

https://daneshyari.com/en/article/5023696

Download Persian Version:

https://daneshyari.com/article/5023696

Daneshyari.com