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a b s t r a c t

Sufficient and necessary conditions are found for the existence of a positive periodic
solution to the Duffing type equation

u′′ = p(t)u + q(t, u)u.

The results obtained are compared with facts well known for the autonomous Duffing
equation

y′′ + ay − by3 = 0.

Uniqueness of solutions and possible generalizations are discussed, as well.
© 2017 Published by Elsevier Ltd.

1. Introduction

The paper deals with the question on the existence and uniqueness of a positive solution to the periodic
boundary value problem

u′′ = p(t)u+ q(t, u)u; u(0) = u(ω), u′(0) = u′(ω). (1.1)

Here, p ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function. Under a solution to problem (1.1),
as usually, we understand a function u : [0, ω] → R which is absolutely continuous together with its first
derivative, satisfies given equation almost everywhere, and verifies periodic conditions.

A non-linear term of the form q(t, x)x in (1.1) is chosen on the one hand with respect to convenient
formulation of the results and on the other hand, since we are interested in problem (1.1) with super-linear
non-linearities. Such kind of problems arises frequently in applications. For example, in mathematical models
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Fig. 1. Phase portrait of Eq. (1.4) with a, b > 0.

of various oscillators, one can find the following equation

y′′ + δy′ + ay − by3 = γ sin t, (1.2)

where a, b, γ ∈ R and the damping constant satisfies δ ≥ 0. This equation is the central topic of the
monograph [1] by Duffing published in 1918 and still bears his name today (see also [2]). Considering the
equation of motion of the forced damped pendulum

y′′ + δy′ + g

ℓ
sin y = γ sin t. (1.3)

Eq. (1.2) with a, b > 0 appears when approximating the non-linearity in (1.3) by Taylor’s polynomial of the
third order with the centre at 0. A survey of results dealing with the analysis of the pendulum equation is
given in [3]. Eq. (1.2) can be also interpreted as the equation of motion of a forced oscillator with a spring
whose restoring force is given as a third-order polynomial. The phase portrait of the free undamped Eq. (1.2)
with a, b > 0, i. e., the equation

y′′ + ay − by3 = 0, (1.4)

can be easily determined and it is illustrated in Fig. 1.

Definition 1.1. A solution u to problem (1.1) is referred as a sign-constant solution if there exists i ∈ {0, 1}
such that

(−1)iu(t) ≥ 0 for t ∈ [0, ω],

and a sign-changing solution otherwise.

Let us summarize some well-known facts concerning periodic solutions to Eq. (1.4) (see, e.g., [2,4]).

Proposition 1.2. The following statements hold:

(1) For any a ≤ 0 and b > 0, Eq. (1.4) has a unique equilibrium y = 0 and no other periodic solutions
occur.

(2) For any a, b > 0, Eq. (1.4) has exactly three equilibria y = 0, y =
√

a
b , y = −

√
a
b and no other

non-trivial sign-constant periodic solutions occur.
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