On periodic solutions to second-order Duffing type equations

Alexander Lomtatidze, Jiří Šremr*
Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic
Institute of Mathematics, Czech Academy of Sciences, Branch in Brno, Žižkova 22, 616 62 Brno, Czech Republic

A R T I C L E I N F O

Article history:
Received 14 March 2017
Accepted 1 September 2017
Available online 6 October 2017

Keywords:

Periodic solution
Duffing type equation
Positive solution

A B S TRACT

Sufficient and necessary conditions are found for the existence of a positive periodic solution to the Duffing type equation

$$
u^{\prime \prime}=p(t) u+q(t, u) u
$$

The results obtained are compared with facts well known for the autonomous Duffing equation

$$
y^{\prime \prime}+a y-b y^{3}=0
$$

Uniqueness of solutions and possible generalizations are discussed, as well.
© 2017 Published by Elsevier Ltd.

1. Introduction

The paper deals with the question on the existence and uniqueness of a positive solution to the periodic boundary value problem

$$
\begin{equation*}
u^{\prime \prime}=p(t) u+q(t, u) u ; \quad u(0)=u(\omega), u^{\prime}(0)=u^{\prime}(\omega) \tag{1.1}
\end{equation*}
$$

Here, $p \in L([0, \omega])$ and $q:[0, \omega] \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function. Under a solution to problem (1.1), as usually, we understand a function $u:[0, \omega] \rightarrow \mathbb{R}$ which is absolutely continuous together with its first derivative, satisfies given equation almost everywhere, and verifies periodic conditions.

A non-linear term of the form $q(t, x) x$ in (1.1) is chosen on the one hand with respect to convenient formulation of the results and on the other hand, since we are interested in problem (1.1) with super-linear non-linearities. Such kind of problems arises frequently in applications. For example, in mathematical models

[^0]

Fig. 1. Phase portrait of Eq. (1.4) with $a, b>0$.
of various oscillators, one can find the following equation

$$
\begin{equation*}
y^{\prime \prime}+\delta y^{\prime}+a y-b y^{3}=\gamma \sin t \tag{1.2}
\end{equation*}
$$

where $a, b, \gamma \in \mathbb{R}$ and the damping constant satisfies $\delta \geq 0$. This equation is the central topic of the monograph [1] by Duffing published in 1918 and still bears his name today (see also [2]). Considering the equation of motion of the forced damped pendulum

$$
\begin{equation*}
y^{\prime \prime}+\delta y^{\prime}+\frac{g}{\ell} \sin y=\gamma \sin t \tag{1.3}
\end{equation*}
$$

Eq. (1.2) with $a, b>0$ appears when approximating the non-linearity in (1.3) by Taylor's polynomial of the third order with the centre at 0 . A survey of results dealing with the analysis of the pendulum equation is given in [3]. Eq. (1.2) can be also interpreted as the equation of motion of a forced oscillator with a spring whose restoring force is given as a third-order polynomial. The phase portrait of the free undamped Eq. (1.2) with $a, b>0$, i. e., the equation

$$
\begin{equation*}
y^{\prime \prime}+a y-b y^{3}=0 \tag{1.4}
\end{equation*}
$$

can be easily determined and it is illustrated in Fig. 1.

Definition 1.1. A solution u to problem (1.1) is referred as a sign-constant solution if there exists $i \in\{0,1\}$ such that

$$
(-1)^{i} u(t) \geq 0 \quad \text { for } t \in[0, \omega],
$$

and a sign-changing solution otherwise.
Let us summarize some well-known facts concerning periodic solutions to Eq. (1.4) (see, e.g., [2,4]).

Proposition 1.2. The following statements hold:
(1) For any $a \leq 0$ and $b>0$, Eq. (1.4) has a unique equilibrium $y=0$ and no other periodic solutions occur.
(2) For any $a, b>0$, Eq. (1.4) has exactly three equilibria $y=0, y=\sqrt{\frac{a}{b}}, y=-\sqrt{\frac{a}{b}}$ and no other non-trivial sign-constant periodic solutions occur.

https://daneshyari.com/en/article/5024355

Download Persian Version:
https://daneshyari.com/article/5024355

Daneshyari.com

[^0]: * Corresponding author at: Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech Republic.

 E-mail addresses: lomtatidze@fme.vutbr.cz (A. Lomtatidze), sremr@fme.vutbr.cz (J. Šremr).

