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a b s t r a c t

In this paper we study the following optimal shape design problem: Given an open
connected set Ω ⊂ RN and a positive number A ∈ (0, |Ω |), find a measurable subset
D ⊂ Ω with |D| = A such that the minimal eigenvalue of −div(ζ(λ, x)∇u)+αχDu =
λu in Ω , u = 0 on ∂Ω , is as small as possible. This sort of nonlinear eigenvalue
problems arises in the study of some quantum dots taking into account an electron
effective mass. We establish the existence of a solution and we determine some
qualitative aspects of the optimal configurations. For instance, we can get a nearly
optimal set which is an approximation of the minimizer in ultra-high contrast
regime. A numerical algorithm is proposed to obtain an approximate description
of the optimizer.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω be a bounded, connected, open set in RN with Lipschitz boundary. Assume that A is a given
positive number, 0 < A < |Ω |, where |.| denotes the Lebesgue measure. Given a measurable set D ⊂ Ω with
|D| = A, consider the following nonlinear eigenvalue problem

− div(ζ(λ, x)∇u) + αχDu = λu in Ω , u = 0 on ∂Ω . (1.1)

In this paper, λ is the principal eigenvalue or the smallest positive eigenvalue of (1.1) and u = u(x) is a
corresponding eigenfunction.

We are interested in the cases that ζ(λ, x) is a nonlinear function of the parameter λ. Indeed, Eq. (1.1)
can be regarded as a nonlinear elliptic eigenvalue problem because of the nonlinear dependence on the
eigenparameter.
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Such nonlinear eigenvalue problems appear as the Hamiltonian equation governing some quantum dot
nanostructures, where ζ(λ, x) corresponds to the effective mass of the carrier (electron or hole) and the
surrounding matrix, αχD is the potential function, λ is the ground state energy and u is the wave function
[1–4]. A real physical phenomenon modeled by Eq. (1.1) is the heterostructures of different semiconductors
where the electron effective mass depends on both the energy and position [3,4].

It is known that the ground state energy of (1.1) depends on the set D, the region with potential α, and
we use the notation λ(D) as we want to emphasize this dependence. To determine the system’s potential
which gives the minimum ground state energy, we consider the following optimization problem

inf
D⊂Ω

|D|=A

λ(D). (1.2)

Let us recall here that nonlinear eigenvalue problems and optimization problems have many applications
in engineering and applied sciences and these problems have been intensively attractive to mathematicians in
the past decades [5]. However, it should be mentioned that the majority of the investigated nonlinear models
are nonlinear in their differential operator part [6–9]. We note that Eq. (1.1) has nonlinear dependence on
the parameter λ and such systems have been under less attention in this field of study [10–12].

Taking advantage of a variational characterization of the eigenvalues of a nonlinear eigenvalue prob-
lem [13,14], we derive in Section 2 the existence of an optimal ground state energy under certain conditions
on the function ζ. Next we prove in Section 3 qualitative properties of the optimal shape D̂. Namely, the
optimal set contains a tubular neighborhood of the boundary ∂Ω , and if Ω is simply connected and α is
sufficiently small, then D̂ is connected. When α is too large, ultra-high contrast regime, we determine a
nearly optimal set which is an approximation of the minimal set for λ(D). For the special case of a ball Ω
centered at the origin we verify under symmetry conditions on ζ that Ω \ D̂ is also a ball centered at the
origin. Section 4 is devoted to the numerical solution of the nonlinear eigenvalue and the shape optimization
problem. We propose a numerical method for the solution of the nonlinear eigenvalue problem. The optimal
configuration D̂ is determined by a gradient type method. For this purpose we derive a formula for the shape
derivative of the eigenvalue. The paper closes with some numerical examples and concluding remarks.

2. Existence result for optimization problem (1.2)

This section is devoted to prove the existence of a solution of problem (1.2). We take advantage of a
variational characterization of the ground state energy which follows immediately from a generalization of
the minmax characterization of the eigenvalues of Poincaré to eigenvalue problems depending nonlinearly
on the eigenparameter given in [13–15].

Although the potential function is αχD, a variational formula is derived for a more general equation
where the potential function is v(x) ≥ 0 in L∞(Ω). Multiplying (1.1) by φ ∈ H1

0 (Ω) and integrating by
parts, one gets the following variational formulation of (1.1): Find λ ∈ R and u ∈ H1

0 (Ω), u ̸= 0 such that

a(λ, u, φ) :=
∫
Ω

ζ(λ, x)∇u · ∇φdx+
∫
Ω

vuφdx = λ

∫
Ω

uφdx =: λb(u, φ), (2.1)

for all φ in H1
0 (Ω).

We assume that for every λ ≥ 0

ζ(λ, ·) ∈ C(Ω̄) and ζ(λ, .) ≥ θλ > 0. (2.2)

Then the bilinear form a(λ, ·, ·) is H1
0 (Ω)-elliptic, continuous and symmetric. Further, b(·, ·) is a symmetric,

completely continuous and positive definite bilinear form on H1
0 (Ω).
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