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a b s t r a c t

We study the dynamic pressure in an irrotational solitary wave propagating at the
surface of water over a flat bed, under the influence of gravity. We consider the
nonlinear regime, that is, the case of waves of moderate to large amplitude. We
prove that, independently of the wave amplitude, the maximum of the dynamic
pressure is attained at the wave crest, while its minimum is attained at infinity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Solitary waves can propagate on a free surface of water over a flat bed under the influence of gravity over
long distances, while maintaining a constant shape. They are two-dimensional objects in the sense that they
present essentially no variations in the horizontal direction perpendicular to the direction of propagation of
the wave. They are thus fully characterised by a vertical cross section parallel to the direction of propagation,
where they take the form of a single hump of elevation of the water, moving at constant speed. In the
reference frame moving with the wave, their profile is steady and symmetric with respect to the vertical
axis through the wave crest, and decreases rapidly away from this axis, see Fig. 1. The first observation of
this phenomenon was made by Scott Russell in 1834 in a canal near Edinburgh. His report and subsequent
laboratory experiments played an important role in the early developments of water waves theory, see [12].

We are interested here in the description of solitary waves of moderate and large amplitude, which fail to
be captured accurately by the linear theory of water waves. As the effects of surface tension and viscosity
are negligible in this regime, and it is physically reasonable to assume the water has a constant density ρ (we
take ρ = 1 throughout), the waves are described by the Euler equation for a homogeneous incompressible
fluid with free boundary, under the influence of gravity only. Moreover, motivated by the observation that
large areas of abyssal plains in the oceans are essentially flat, we will restrict our attention here to a body
of water over a flat bed.
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The rigorous mathematical investigation, beyond the linear theory approximation, of the fluid motion
beneath gravity water waves has made important progress in recent years, see [7,3,9,8] and references in
these papers. The study of the pressure in the fluid is of particular interest, from a theoretical point of
view but also due to its important practical applications in maritime engineering. A good knowledge of the
pressure field is indeed essential to compute the forces acting on maritime structures. On the other hand,
pressure measurements at the bottom of the water can also be used to infer precious information about the
waves on the surface [5,4,19,16,15].

In the context of irrotational waves, the pressure field was investigated by Constantin and Strauss [9]
for periodic waves, and Constantin, Escher and Hsu [8] for solitary waves. Their main results concern
the monotonicity properties of the pressure in the fluid domain. Although fluid motion can be driven by
pressure gradients, in water at rest the hydrostatic pressure – which has a constant vertical gradient pointing
downwards – only counterbalances gravity and does not induce any motion. The study of the relation between
fluid motion and pressure therefore benefits from introducing the dynamic pressure, which is defined as the
difference between the total pressure in the fluid and the hydrostatic pressure, see (11). The dynamic pressure
beneath irrotational periodic gravity water waves was recently investigated by Constantin in [6], where it
is proved that the maximum of the dynamic pressure is attained at the wave crest and its minimum at the
wave trough. Since it is known [1] that periodic waves converge to solitary waves in the long-wave limit, it is
natural to guess that similar results hold for solitary waves. (Note that one should be careful when applying
this kind of reasoning to dynamic properties of the waves, for it was shown in [7] that particle trajectories
in the fluid undergo a dramatic qualitative change in the long-wave limit.) In the present paper we prove,
using maximum principles for elliptic partial differential equations, that it is indeed the case. Namely, the
maximum of the dynamic pressure in an irrotational solitary wave is attained at the crest, while its minimum
is attained at infinity.

2. Mathematical formulation of the problem

Irrotational solitary gravity water waves are two-dimensional. It was indeed proved in [10] that, in the
absence of vorticity, no truly three-dimensional solitary waves can exist. A travelling solitary wave is thus
fully characterised by the description of a cross section of the flow, perpendicular to the crest line. We
choose Cartesian coordinates (X,Y ), the Y -axis pointing vertically upwards, the X-axis being parallel to
the direction of propagation of the wave. We require the flow to be at rest for X → ±∞, and we choose the
Y coordinate so that Y = 0 there, with the flat bed lying at depth Y = −d, d > 0. We suppose that the
crest of the wave is at X = 0 at time t = 0.

We investigate the dynamic pressure in a permanent wave with profile Y = η(X−ct), moving at constant
speed c > 0, so we assume that the velocity field of the flow has the form

(u, v) = (u(X − ct), v(X − ct)).

Under these assumptions, time can be removed from the governing equations by describing the wave in the
moving frame, that is, in the coordinates

x = X − ct, y = Y.

In the new reference frame, which moves at speed c in the direction of propagation of the wave, the wave is
stationary and the flow is steady, see Fig. 1.

For water waves, it is physically reasonable to assume that the fluid is incompressible and homogeneous
(with constant density ρ = 1), which yields the continuity equation

ux + vy = 0. (1)
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