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a  b  s  t  r  a  c  t

Because  the two  coordinates  of particle’s  guiding  center  of motion  in uniform  magnetic  field
do  not  commute,  we  think  it  is of necessity  to study adiabatic  invariant  of  electron  motion
in slowly  varying  magnetic  field  in  the  context  of  quantum  mechanics.  By  constructing  the
entangled state  representation  which  is  the  eigenvector  of  electron’s  coordinates  and  the
squeezing mechanism  of gyration  radius,  we  directly  reach  the  conclusion  that  the magnetic
flux is adiabatic  invariant  in  slowly  varying  magnetic  field. We  also compare  this  case  with
the adiabatic  invariant  of  a pendulum  whose  string  length  is shortened  very  slowly.

©  2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In quantum mechanics, an adiabatic change is one that occurs at a rate much slower than the difference in frequency
between energy eigenstates. In this case, the energy states of the system do not make transitions, so that the quantum
number is an adiabatic invariant. In early days of studying the theory of quantum mechanics some pioneers, e.g., Lorentz,
Einstein, Bohr, et al. suggested that the quantities to be quantized (good quantum numbers) must be adiabatic invariants.
Sommerfeld once summarized: “the quantum number of an arbitrary mechanical system is given by the adiabatic action
variable.” Sommerfeld once summarized: “the quantum number of an arbitrary mechanical system is given by the adiabatic
action variable.” As the first example of adiabatic invariant quantity, Lorentz considered a quantum pendulum whose string
length l is shortened very slowly (adiabatically), the frequency of the pendulum changes, but the quantum number of the
pendulum cannot change because at no point is there a high enough frequency to cause a transition between the states. Later
Einstein pointed out that although the energy E and the frequency � of the pendulum are both changed during the procedure,
due to ıE/E = −ıl/ (2l) , so their ratio E/�∼E

√
l is a constant (note a pendulum’s period 2�

√
l/g). This is analogous to Wien’s

observation that under slow motion of the wall the energy to frequency ratio of reflected waves is constant. Usually, the
concept of adiabatic invariants introduced into quantum mechanics was recapitulated in the following way  [1]:

In classical x − p phase space, the possible path of a particle is confined in the curve

p (E, x) = {2m (E − V)}1/2, (1)
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where V is potential energy, this curve surrounds an area

˚ (E) = p (E, x) dx. (2)

Let the basic frequency of this motion be �′, then∮
dt =

∮
dx

v′ =
∮

∂p

∂E
dx = d˚ (E)

dE
,  (3)

(note that dE = v′dp is valid for any x), thus

˚ (E) =
∮

pdx, (4)

so the frequency is

�′ = dE

d˚ (E)
. (5)

For a harmonic oscillator �′ is independent of E, thus

 ̊ = E

�′ , (6)

is an adiabatic invariant quantity. Since the action variable for the harmonic oscillator is an integer n, Eq. (6) leads to the
Bohr–Sommerfeld quantization rule:∮

pdx = nh. (7)

Eq. (7) is the foundation of the “Old Quantum Theory”. Although this condition is not exact for the small quantum number
n, and the whole theory is still semi-classical, it still gave good first thought to the correct way  of quantization.

In a preceding paper [2] Fan and Chen have studied adiabatic invariant for quantized mesoscopic L − C circuit which is
composed of a capacity C and an inductance L connected to each other [3]. In this work we shall focus on finding adiabatic
invariant for charged particle (with charge q) motion in time-varying magnetic field. This topic may  have potential uses in
various applications of plasma physics [4]. Considering a charged particle (with mass M and charge q) motion in the spatially
uniform magnetic field in the ẑ direction, �B = Bẑ, the cyclotron frequency is  ̋ = |q|B/M, when B slowly increases within
time, in the context of quantum theory we want to know what is the corresponding adiabatic invariant. Although this topic
may  also be studied in the context of classical electrodynamics, we  still think it needs be tackled quantum mechanically,
since from quantum mechanical view the two coordinates of guiding center of particle’s trajectory do not commute, and the
circular orbit concept of charged particles in uniform magnetic field is ambiguous.

Let us briefly review how to tackle this problem in the context of classical electrodynamics. From Maxwell equations
a time-varying magnetic field engendered a space-varying electric field, ∇ × �E = −∂�B/∂t, in cylindrical coordinates it is
expressed as

1
r

∂
∂r

(rE�) = −∂B

∂t
, (8)

where E� is induced along the motion path, noting B varies very slowly, ∂B/∂t is small, from Eq. (8) we  have

E� = −1
2

r
∂B

∂t
, (9)

or in vector form

Ê� = 1
2

r̂ × ∂B̂

∂t
, (10)

the electric field will accelerates the particle, and the orbit is no longer a circle. However, since ∂B/∂t is small, E� is small
too, and the orbit is nearly a closed circle. The increased transverse kinetic energy due to the induced electric field over one
gyration period is

ı
(

1
2

Mv2
)

= q

∮
Ê� · dr̂. (11)

Using Stokes’s theorem, Eq. (11) becomes

q

∫ ∫ (∇ × Ê�

)
· dŜ = −q

∫ ∫
∂B̂

∂t
· dŜ = |q|∂B

∂t
�R2, (12)
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