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In two experiments, Friedenberg and Liby (2016) studied how a diversity of complexity estimates such as
density, number of blocks, GIF compression rate and edge length impact the perception of beauty of semi-
random two-dimensional patterns. They concluded that aesthetics ratings are positively linked with GIF
compression metrics and edge length, but not with the number of blocks. They also found an inverse U-shaped
link between aesthetic judgments and density. Thesemixed results originate in the variety of metrics used to es-
timate what is loosely called “complexity” in psychology and indeed refers to conflicting notions. Here, we rean-
alyze their data adding two more conventional and normative mathematical measures of complexity: entropy
and algorithmic complexity. We show that their results can be interpreted as an aesthetic preference for low re-
dundancy, balanced patterns and “crooked” figures, but not for high algorithmic complexity. We conclude that
participants tend to have a preference for some types of complexity, but not for all. These findings may help un-
derstand divergent results in the study of perceived beauty and complexity, and illustrate the need to specify the
notion of complexity used in psychology. The field would certainly benefit from a precise taxonomy of complex-
ity measures.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Within the long-standing line of research investigating the
human judgment of beauty (Berlyne, 1971; Birkhoff, 1932;
Eysenck, 1940), complexity has been a prominent issue with
contradictory conclusions (for a brief review see Forsythe, Nadal,
Sheehy, Cela-Conde & Sawey, 2011). We believe that two factors
contribute to this heterogeneity (for a similar view see Nadal,
Munar, Marty & Cela-Conde, 2010). Firstly, many studies on the per-
ception of beauty have used pictures, paintings, portraits or natural
world objects to increase ecological validity (e.g., Krupinski &
Locher, 1988; Messinger, 1998; Nicki, Lee, & Moss, 1981; Osborne &
Farley, 1970). By doing so, they have introduced unwanted
confounding factors. Studies based on more abstract stimuli are
probably easier to interpret. In this respect, experiments based on
non figurative material (Aitken, 1974; Ichikawa, 1985; Markovic &
Gvozdenovic, 2001), such as two-dimensional binary grids

(i.e., grids with black and white cells, e.g., Palumbo, Ogden, Makin,
& Bertamini, 2014; Spehar, Clifford, Newell, & Taylor, 2003;
Bertamini, Makin, & Pecchinenda, 2013), are of special interest as
they are easily modeled in a mathematical sound way as binary ma-
trices, which gives access to well-defined measures of complexity.
Secondly, what is exactly meant by “complexity” is variable from
one study to another, as many definitions of complexity exist. This
is problematic as different types of complexity might result in differ-
ent outcomes.

In a recent paper, Friedenberg and Liby (2016) investigated how
participants rate the beauty of artificial 2-dimensional binary grids
for various levels of complexity. The authors used different indices
of complexity, listed below:

• The number of parts or blocks in the pattern (a block is a maximal
subset of adjacent black cells; see Appendix for examples).

• The total edge length, which is the perimeter of the figure defined by
the black cells (see Appendix for examples).

• The GIF compression metrics, defined as GIF/BMP where “GIF” is the
size of the image file in GIF format and “BMP” the size of the BMP
image file of a given grid. BMP is a non-compressed format, and GIF
is a lossless compressed format based on the Lempel-Ziv-Welch
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(LZW) compression algorithm (Donderi, 2006; Forsythe, Sheehy, &
Sawey, 2003). Thus, the GIF compression metrics measures the non-
redundancy of sub-patterns.

• The density, defined as the proportion of black cells in the grid.

Results showed that participants had a preference for evenly bal-
anced patterns with large total edge length and high GIF compression
metrics.

Crucially, in the introduction Friedenberg and Liby (2016)
contrasted two fundamental notions of complexity, that is, entropy (to
wit, how unbalanced a pattern is), and algorithmic complexity (to wit,
how compressible a pattern is), but did not use them subsequently.
Here, we reanalyze the data of both experiments using these two
more conventional measures of complexity. We show that the general
notion that people have a preference for complexity must be specified:
they do show a preference for high entropy and more crooked figures,
but there is no evidence that they prefer high algorithmic complexity
per se. These results may help to understand why contradictory results
have been found in previous research (Forsythe et al., 2011; Nadal et al.,
2010), and call for a cautious definition of complexity metrics.

2. General method

2.1. Procedure

In their two experiments, Friedenberg and Liby (2016) used a series
of square grids filledwith white and black cells. Participants were asked
to consider the white cells as the background, and the black cells as the
figure. The grids (patterns) were pseudo-random, with densities fixed
at 10, 20, 30,…, 100%. In Experiment 1,five 10× 10 grids of each density
(total: 50 grids) were used. In Experiment 2, ten 15 × 15 grids of each
density (total: 100 grids) were used.

2.2. Measures

2.2.1. Subjective beauty
Participants were asked to rate each grid in terms of their subjective

beauty. The mean rating of each grid was used as a measure of subjec-
tive beauty. The 4 above-mentioned metrics of complexity (density,
number of parts, edge length and GIF compression) were also used in
our re-analysis. Below we describe them and how they relate to (Shan-
non information) entropy and (algorithmic) complexity.

2.2.2. Edge length and number of parts
As the definition of edge length was not fully detailed in the original

paper by Friedenberg and Liby (2016), we re-computed it with our own
algorithm using R (Version 2.14; CRAN project; R Development Core
Team, 2013). We also re-computed the number of parts (see Appendix
for the R-codes). Previous studies have demonstrated a preference for
shapes with larger edge length with different material: polygons
(Friedenberg & Bertamini, 2015).

The number of parts is a natural measure of “complexity”. The more
parts in the pattern, themore complex it might look on average. Never-
theless, it would be more accurately described as a measure of scatter,
that is, how evenly spread the black cells are. For instance, a chessboard
pattern achieves maximum possible number of parts, whereas it is usu-
ally not considered complex.1

Edge length may look similar to the number of parts, but a sin-
gle part with a given number of black cells can actually have very
different edge lengths, depending on how crooked it is. Regular
parts such as squares have small edge length, while more chaotic
parts may have very large edge length (see Appendix, Fig. 1).
Edge length could be described as a measure of how crooked a
figure is, which is of course linked to its algorithmic complexity
as well as its entropy.

2.2.3. Entropy
The term “entropy” has been used in various ways in the literature.

In some cases (for instance, withmaterial difficult to describe in amath-
ematical simple form), it is used with the generic sense of “disorder”
(e.g., Gillam & Grove, 2011). In other cases, especially when binary se-
quences or grids are used, “entropy” refers either to the classical Shan-
non (first order) information entropy (e.g., Hirsh, Mar, & Peterson,
2012) or to other measures based on it, such as Rényi entropy
(e.g., Kar, Bhagat, & Routray, 2010) or Tsallis wavelet entropy (Chen &
Li, 2014). Shannon's (first order) entropy only depends on the relative
frequencies of the symbols in a series or a grid, without taking their or-
ganization into account. For that reason, more sophisticated measures
have also been suggested, although seldom used, such as higher-order
entropy or entropy rate (Porta et al., 2001). In the sequel, we use the
term “entropy” in its more conventional and classical meaning of
Shannon's first order information entropy.

Density can be related to (Shannon first order) entropy (Shannon &
Weaver, 1949) in an exact mathematical way. In the case of a binary
source such as the one used here, the entropy is a simple function of
density.2 Indeed, the entropy H of a binary source corresponding to a
density d is given by

H ¼ –d� log2 dð Þ− 1–dð Þ � log2 1–dð Þ

This function of d is an inverse U-shaped curve with a maximum at
0.5. Friedenberg and Liby (2016) found an inverse U-shaped curve
with a maximum at 0.5 when plotting participants' ratings against den-
sity. As we will see below, this non-linear relation translates in a linear
positive relation between aesthetic judgments and entropy. From here
on, we will use entropy instead of density, as it carries the same infor-
mation as density for our purpose.

Shannon first order entropy has often been used as a measure of
complexity, but as the above formula shows, it is a function of density
(or symbol redundancy). As a consequence, it depends on how far
from a 50% density pattern the grid is, but it does not take into account
how the black cells are spread across the grid. For instance, any grid
with a density of 50%, including seemingly random patterns, but also
regular patterns such as a chessboard, achieves maximum entropy. Al-
though widely used as a complexity measure, entropy has been criti-
cized for being too narrow in scope and equivalent to a χ2 (Gauvrit &
Morsanyi, 2014).

2.2.4. Algorithmic complexity
GIF compressionmetrics is another naturalmeans to assess algorith-

mic complexity. The algorithmic complexity of a given object is defined
as the length of the shortest program that produces it and then halts (Li
& Vitányi, 2008). Equivalently, it is the shortest possible compressed

2 This is also true of Hartley entropy, Rényi entropy or Tsallis entropy, but not of higher-
order entropy.

1 A possible relatedmeasure is themean size of the parts. For a given density d in a grid
ofN cells, suppose that we have k parts, then, the number d×N/k is themean size of parts,
which is a possible measure of complexity linked both to the density and the number of
parts of a given pattern.
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