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A B S T R A C T

Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the vio-
lations of expectancy that occur when outcomes differ from expectations are used to modify value and shape
behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals
associated with feedback processing. Participants performed a time estimation task in which they had to guess
the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied
task difficulty across the experiment to create a range of different feedback expectancies − reward feedback was
either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the
reward positivity, a component of the human event-related brain potential associated with feedback processing,
scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected
feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be
predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was
about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As
such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the
reward positivity, with interesting implications for theories of reinforcement learning.

1. Introduction

Reinforcement learning in humans and other animals depends on
the computation of prediction errors − discrepancies between the ex-
pected and the actual value of outcomes. Computationally, prediction
errors are used to update the values of choice options so that over time
behaviour is optimized to achieve the system’s primary goal of max-
imizing reward (Rescorla &Wagner, 1972; Sutton & Barto, 1998; c.f.
utilitarianism, Mill, 1863). Past findings with monkeys suggest that
learning systems within the simian brain utilize neural prediction errors
to optimize behaviour, with the primary supportive evidence being the
scaling of the firing rate of the midbrain dopamine system in these
animals in a manner predicted by reinforcement learning theory
(Schultz, Dayan, &Montague, 1997; see also Amiez, Joseph, & Procyk,
2005; Matsumoto, Suzuki, & Tanaka, 2003; Matsumoto, Matsumoto,
Abe, & Tanaka, 2007; Schultz, Tremblay, & Hollerman, 1998;
Shidara & Richmond, 2002). For example, in a seminal study, Schultz
et al. (1997) demonstrated that the firing rates of neurons within the
midbrain dopamine system in monkeys mirrored the theoretical pre-
dictions of reinforcement learning: with learning, the dopamine neuron

firing rates concomitantly decreased to rewards and increased to cues
predicting the rewards. In humans, studies using both functional mag-
netic resonance imaging (Bray &O’Doherty, 2007; Brown & Braver,
2005; Haruno & Kawato, 2006; Jessup, Busemeyer, & Brown, 2010;
Nieuwenhuis et al., 2005; Niv, Edlund, Dayan, & O’Doherty, 2012;
O’Doherty et al., 2004; Roy et al., 2014; Silvetti, Seurinck, & Verguts,
2013; Tanaka et al., 2004; Tobler, O’Doherty, Dolan, & Schultz, 2006)
and electroencephalography (Cohen & Ranganath, 2007; Eppinger,
Kray, Mock, &Mecklinger, 2008; Ferdinand, Mecklinger,
Kray, & Gehring, 2012; Hajcak, Moser, Holroyd & Simons, 2007;
Hassall, MacLean, & Krigolson, 2014; Hewig et al., 2007;
Holroyd & Krigolson, 2007; Holroyd & Coles, 2002; Holroyd,
Nieuwenhuis, Yeung, & Cohen, 2003; Holroyd, Krigolson, Baker,
Lee, & Gibson, 2009; Krigolson &Holroyd, 2007; Krigolson et al., 2011;
Krigolson, Hassall, & Handy, 2014; Morris, Heerey, Gold, & Holroyd,
2008; Nieuwenhuis et al., 2002; Walsh & Anderson, 2012) have shown
learning-related changes in the evoked responses to reward feedback
that suggest that the underlying neural systems generating these signals
are computing prediction errors. Specifically, the aforementioned stu-
dies in humans (and in monkeys) have shown a sensitivity of reward
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signals to expectancy − the difference between unexpected rewards
and punishments elicit a larger neural response than the difference
between expected rewards and punishments (e.g., Holroyd & Krigolson,
2007; Sambrook & Goslin, 2015).

Reward prediction error theories derive from early mathematical
formalisms of reinforcement learning. Rescorla and Wagner (1972)
proposed that surprising events should have more impact on behaviour
than unsurprising events. They offered that the value of a given cue was
the prediction, or the expectancy, of a subsequent outcome; as such,
they defined a prediction error as the difference between the value of an
outcome and the value of the cue that predicted the outcome. In
mathematical models, for example, if a cue would lead with 100%
confidence to a reward, its value would be 1, yet if the agent was unsure
whether the cue would result in a reward (50% chance of reward), then
the value would be 0.5. This position holds that larger differences be-
tween expected and outcome values lead to larger prediction errors.
Rescorla and Wagner (1972) also proposed that the degree of learning
is proportional to the magnitude of prediction errors, with larger and
smaller prediction errors resulting in larger and smaller changes in
value and behavior, respectively. On this account, the degree of
learning from an outcome is linearly related to the expectedness of an
outcome. Additionally, modern developments of the Rescorla-Wagner
learning rule (e.g., temporal difference learning; Sutton & Barto, 1990;
Sutton & Barto, 1998), continue to describe the relationship between
learning and outcome expectedness to be linear. This prediction has
received substantial empirical support. For instance, studies have
shown that the magnitude of neural prediction error signals impacts the
magnitude of behavioural adaptations on future trials within a re-
occurring environment in that the larger the prediction error signal, the
larger the behavioural adaptation (Cavanagh, Frank, Klein, & Allen,
2010; Cohen & Ranganath, 2007; Frank, Woroch, & Curran, 2005;
Gehring, Goss, Coles, Meyer, & Donchin, 1993; Holroyd & Krigolson,
2007; Holroyd et al., 2009; Morris et al., 2008; Wessel, Danielmeier,
Morton, & Ullsperger, 2012).

In principle then, neural systems for reinforcement learning should
be sensitive to differing levels of expectancy deviation (i.e., differing
prediction error magnitudes). Supporting this, Holroyd and Krigolson
(2007) demonstrated that the amplitude of the reward positivity (for-
merly the feedback-related negativity), a medial-frontal component of
the human event-related brain potential (ERP) involved in reward
evaluation, scaled to outcome expectancy during performance of a time
estimation task in which on each trial participants guessed the duration
of one second and received feedback on their performance. They
showed that the amplitude of the reward positivity for unexpected
outcomes was larger than the reward positivity for expected outcomes.
Importantly, they demonstrated that changes in response times were
larger following incorrect trials than correct trials, as well as un-
expected trials than expected trials, demonstrating that behavioural
adaptations were related to the amplitude of the reward positivity. In a
follow-up study that confirmed and extended this result, Holroyd et al.
(2009) demonstrated that the reward positivity scaled across three le-
vels of expectancy − expected (80%), control (50%), and unexpected
(20%: see also Cohen, Elger, & Ranganath, 2007; Eppinger et al., 2008;
Ferdinand et al., 2012; Hajcak et al., 2007; Hewig et al., 2007;
Holroyd & Coles, 2002; Holroyd, Pakzad-Vaezi, & Krigolson, 2008;
Holroyd, Nieuwenhuis, Yeung, & Cohen, 2003; Holroyd,
Krigolson, & Lee, 2011; Kreussel et al., 2012; Liao, Gramann, Feng,
Deák, & Li, 2011; Martin & Potts, 2011; Nieuwenhuis et al., 2002; Ohira
et al., 2010; Pfabigan, Alexopoulos, Bauer, & Sailer, 2011; Potts, Martin,
Burton, &Montague, 2006; Walsh & Anderson, 2011).

In contrast to these computational theories, biological processes are
often non-linear. For example, non-linearity has been found in the en-
docrine system (Baldi & Bucherelli, 2005), in synaptic plasticity (Kerr,
Huggett, & Abraham, 1994), and in neural communication (Foster,
Kreitzer, & Regehr, 2002). Indeed, even midbrain dopamine signaling
has been characterized as non-linear when manipulating reward

expectancy (Fiorillo, Tobler, & Schultz, 2003) and reward magnitude
(Schultz, 2016; Schultz et al., 2015; Stauffer, Lak, Kobayashi, & Schultz,
2016; Stauffer, Lak, & Schultz, 2014). For example, Stauffer et al.
(2014) gave monkeys unpredictable rewards of varying magnitude
(0.1–1.2 ml of juice). The authors asserted that, because the rewards
could not be predicted, reward predictions were constant and near zero.
Thus, they claimed, prediction error magnitudes were proportional to
reward magnitudes. Interestingly, they observed that dopamine acti-
vation comported to a sigmoid-shaped utility function, such that ex-
treme gains and losses resulted in relatively smaller changes in sub-
jective value (see Bernoulli, 1738 /1954; Mas-Colell,
Whinston, & Green, 1995).

Thus a relationship between reward expectancy and prediction error
amplitudes is apparent, yet the issue of linearity has never been ex-
amined. In the present study, we investigated the relationship between
reward expectancy and a neural correlate of reward evaluation, the
reward positivity, across a range of expectancies from very expected to
very unexpected. The reward positivity reflects the evaluation of re-
ward feedback within the human medial-frontal cortex and is quanti-
fied as the difference between the ‘positive’ feedback waveform and the
‘negative’ feedback waveform (positive − negative; see Proudfit, 2015
for a review). Similar to Holroyd and Krigolson (2007), we employed a
time estimation task modified to include a range of conditions in which
successful outcomes were either very expected, expected, un-
predictable, unexpected and very unexpected. In line with previous
findings (e.g., Holroyd et al., 2009) and a strict interpretation of the
Rescorla-Wagner learning rule (Rescorla &Wagner, 1972), one of our
hypotheses was that there would be a linear relationship between the
amplitude of the reward positivity and expectancy. However, our al-
ternative hypothesis was that we would find a non-linear relationship
between the amplitude of the reward positivity and expectancy − a
result in congruence with biological research (e.g., a sigmoidal re-
lationship). Furthermore, we sought to determine whether the broa-
dened range of expectancies would cause a broadened range of changes
in behaviour. Thus, in line with Holroyd and Krigolson (2007), we
hypothesized that the behavioural adaptations as measured by changes
in response times following positive and negative feedback would be
larger following incorrect trials than correct trials and would follow the
same trend as the reward positivity across expectancies.

2. Methods

2.1. Participants

Twenty undergraduate students (10 female, mean age: 22) from
Dalhousie University participated in the experiment. All participants
had normal or corrected-to-normal vision, no known neurological im-
pairments, and volunteered for extra course credit in a psychology
course. The data of two participants were removed from post-experi-
ment analyses − due to an excessive number of artifacts in the EEG
data of one subject and to errors in the experimental procedure for the
other. All participants provided informed consent approved by the
Health Sciences Research Ethics Board at Dalhousie University, and the
study followed ethical standards as prescribed in the 1964 Declaration
of Helsinki.

2.2. Apparatus and procedure

Participants were comfortably seated in a soundproof room in front
of a computer monitor and used a standard USB gamepad to perform a
modified time estimation task (Miltner, Braun, & Coles, 1997) written
in MATLAB (Version 8.42, Mathworks, Natick, U.S.A.) using the Psy-
chophysics Toolbox extension (Brainard, 1997). The time estimation
task has been used previously to manipulate reward expectancy (e.g.,
Holroyd & Krigolson, 2007). On each trial of the task, participants were
asked to estimate the duration of one second. Participants were cued to
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