
Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/biopsycho

CrossMark

Orofacial electromyographic correlates of induced verbal rumination

Ladislas Nalborczyk^{a,c,*}, Marcela Perrone-Bertolotti^a, Céline Baeyens^b, Romain Grandchamp^a, Mircea Polosan^d, Elsa Spinelli^a, Ernst H.W. Koster^c, Hélène Lœvenbruck^a

^a Univ. Grenoble Alpes, CNRS, LPNC UMR 5105, F-38000 Grenoble

^b Univ. Grenoble Alpes, LIP/PC2S, F-38040, Grenoble, France

^c Department of Experimental Clinical and Health Psychology, Ghent University, Belgium

^d Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, INSERM 1216, CHU de Grenoble, F-3800, Grenoble, France

ARTICLE INFO

Keywords: Rumination Inner speech Electromyography Orbicularis oris Frontalis Relaxation

ABSTRACT

Rumination is predominantly experienced in the form of repetitive verbal thoughts. Verbal rumination is a particular case of inner speech. According to the Motor Simulation view, inner speech is a kind of motor action, recruiting the speech motor system. In this framework, we predicted an increase in speech muscle activity during rumination as compared to rest. We also predicted increased forehead activity, associated with anxiety during rumination. We measured electromyographic activity over the *orbicularis oris superior and inferior, frontalis* and *flexor carpi radialis* muscles. Results showed increased lip and forehead activity after rumination induction compared to an initial relaxed state, together with increased self-reported levels of rumination. Moreover, our data suggest that orofacial relaxation is more effective in reducing rumination than non-orofacial relaxation. Altogether, these results support the hypothesis that verbal rumination involves the speech motor system, and provide a promising psychophysiological index to assess the presence of verbal rumination.

1. Introduction

As humans, we spend a considerable amount of time reflecting upon ourselves, thinking about our own feelings, thoughts and behaviors. Self-reflection enables us to create and clarify the meaning of past and present experiences (Boyd & Fales, 1983; Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008). However, this process can lead to unconstructive consequences when self-referent thoughts become repetitive, abstract, evaluative, and self-critical (Watkins, 2008).

Indeed, rumination is most often defined as a repetitive and recursive mode of responding to negative affect (Rippere, 1977) or life situations (Robinson & Alloy, 2003). Although rumination is a common process that can be observed in the general population (Watkins, 2008), it has been most extensively studied in depression and anxiety. Depressive rumination has been thoroughly studied by Susan Nolen-Hoeksema, who developed the Response Style Theory (RST; Nolen-Hoeksema, 1991). According to the RST, depressive rumination is characterized by an evaluative style of processing that involves recurrent thinking about the causes, meanings, and implications of depressive symptoms. Even though rumination can involve several modalities (i.e., visual, sensory), it is a predominantly verbal process (Goldwin & Behar, 2012; McLaughlin, Borkovec, & Sibrava, 2007). In this study, we focus on verbal rumination, which can be conceived of as

a particularly significant form of inner speech.

Inner speech or covert speech can be defined as silent verbal production in one's mind or the activity of silently talking to oneself (Zivin, 1979). The nature of inner speech is still a matter of theoretical debate (see Perrone-Bertolotti, Rapin, Lachaux, Baciu, & L & venbruck, 2014 for a review). Two opposing views have been proposed in the literature: the Abstraction view and the Motor Simulation view. The Abstraction view describes inner speech as unconcerned with articulatory or auditory simulations and as operating on an amodal level. It has been described as "condensed, abbreviated, disconnected, fragmented, and incomprehensible to others" (Vygotsky, 1987). It has been argued that important words or grammatical affixes may be dropped in inner speech (Vygotsky, 1987) or even that the phonological form or representation of inner words may be incomplete (Sokolov, 1972; Dell & Repka, 1992). MacKay (1992) stated that inner speech is nonarticulatory and nonauditory and that "Even the lowest level units for inner speech are highly abstract" (p.122).

In contrast with this *Abstraction view*, the physicalist or embodied view considers inner speech production as mental simulation of overt speech production. As such, it can be viewed as similar to overt speech production, except that the motor execution process is blocked and no sound is produced (Grèzes & Decety, 2001; Postma & Noordanus, 1996). Under this *Motor Simulation view*, a continuum exists between overt and

http://dx.doi.org/10.1016/j.biopsycho.2017.04.013 Received 28 July 2016; Received in revised form 21 April 2017; Accepted 25 April 2017 Available online 30 April 2017 0301-0511/ © 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Laboratoire de Psychologie & Neurocognition (CNRS UMR 5105), BSHM, BP47 38040 Grenoble Cedex 9, France. *E-mail address:* ladislas.nalborczyk@gmail.com (L. Nalborczyk).

covert speech, in line with the continuum drawn by Decety and Jeannerod (1996) between imagined and actual actions. This hypothesis has led certain authors to claim that inner speech by essence should share features with speech motor actions (Feinberg, 1978; Jones & Fernyhough, 2007). The Motor Simulation view is supported by several findings. Firstly, covert and overt speech have comparable physiological correlates: for instance, measurements of speaking rate (Landauer, 1962; Netsell, Ashley, & Bakker, 2010) and respiratory rate (Conrad & Schönle, 1979) are similar in both. A prediction of the Motor Simulation view is that the speech motor system should be recruited during inner speech. Subtle muscle activity has been detected in the speech musculature using electromyography (EMG) during verbal mental imagery, silent reading, silent recitation (Jacobson, 1931; 1972; Livesay, Liebke, Samaras, & Stanley, Sokolov. 1996: McGuigan & Dollins, 1989), and during auditory verbal hallucination patients with schizophrenia (Rapin, Dohen, in Polosan. Perrier, & L & venbruck, 2013). Secondly, it has been shown that covert speech production involves a similar cerebral network as that of overt speech production. Covert and overt speech both recruit essential language areas in the left hemisphere (for a review, see Perrone-Bertolotti et al., 2014). However, there are differences. Consistent with the Motor Simulation view and the notion of a continuum between covert and overt speech, overt speech is associated with more activity in motor and premotor areas than inner speech (e.g., Palmer et al., 2001). This can be related to the absence of articulatory movements during inner verbal production. In a reciprocal way, inner speech involves cerebral areas that are not activated during overt speech (Basho, Palmer, Rubio, Wulfeck, & Müller, 2007). Some of these activations (cingulate gyrus and superior rostral frontal cortex) can be attributed to the inhibition of overt responses.

These findings suggest that the processes involved in overt speech include those required for inner speech (except for inhibition). Several studies in patients with aphasia support this view: overt speech loss can either be associated with an impairment in inner speech (e.g., Levine, Calvanio, & Popovics, 1982; Martin & Caramazza, 1982) or with intact inner speech: only the later phases of speech production (execution) being affected by the lesion (Baddeley & Wilson, 1985; Marshall et al., 1985; Vallar & Cappa, 1987). Geva, Bennett, Warburton, and Patterson (2011) have reported a dissociation that goes against this view, however. In three patients with chronic post-stroke aphasia (out of 27 patients), poorer homophone and rhyme judgement performance was in fact observed in covert mode compared with overt mode. A limitation of this study, though, was that the task was to detect rhymes in written words, which could have been too difficult for the patients. To overcome this limitation, Langland-Hassan, Faries, Richardson, and Dietz (2015) have tested aphasia patients with a similar task, using images rather than written words. They also found that most patients performed better in the overt than in the covert mode. They inferred from these results that inner speech might be more demanding in terms of cognitive and linguistic load, and that inner speech may be a distinct ability, with its own neural substrates. We suggest an alternative interpretation to this dissociation. According to our view, rhyme and homophone judgements rely on auditory representations of the stimuli (see e.g., Paulesu, Frith, & Frackowiak, 1993). Overt speech provides a strong acoustic output that is fed back to the auditory cortex and can create an auditory trace, which can be used to monitor speech. In the covert mode, the auditory output is only mentally simulated, and its saliency in the auditory system is lesser than in the overt mode. This is in accordance with the finding that inner speech is associated with reduced sensory cortex activation compared with overt speech (Shuster & Lemieux, 2005). In patients with aphasia, the weakened saliency of covert auditory signals may be accentuated for two reasons: first, because of impairment in the motor-to-auditory transformation that produces the auditory simulation, and second, because of associated auditory deficits. Therefore, according to our view, the reduced performance observed in rhyme and homophone judgement tasks in the covert compared with the overt mode in brain-injured patients, simply indicates a lower saliency of the auditory sensations evoked during inner speech compared with the actual auditory sensations fed back during overt speech production. In summary, these findings suggest that overt and covert speech share common subjective, physiological and neural correlates, supporting the claim that inner speech is a motor simulation of overt speech.

However, the Motor Simulation view has been challenged by several experimental results. Examining the properties of errors during the production of tongue twisters, Oppenheim and Dell (2010) showed that speech errors display a lexical bias in both overt and inner speech. According to these researchers, errors also display a phonemic similarity effect (or articulatory bias), a tendency to exchange phonemes with common articulatory features, but this second effect is only observed with overt speech or with inner speech accompanied with mouthing. This has led Oppenheim and Dell (2010) to claim that inner speech is fully specified at the lexical level, but that it is impoverished at lower featural (articulatory) levels. This claim, related to the Abstraction view, is still debated however, as a phonemic similarity effect has been found by Corley, Brocklehurst and Moat (2011). Their findings suggest that inner speech is in fact specified at the articulatory level, even when there is no intention to articulate words overtly. Other findings however, may still challenge the Motor Simulation view. Netsell et al. (2010) have examined covert and overt speech in persons who stutter (PWS) and typical speakers. They have found that PWS were faster in covert than in overt speech while typical speakers presented similar overt and covert speech rates. This can be interpreted in favour of the Abstraction view, in which inner representations are not fully specified at the articulatory level, which would explain why they are not disrupted in PWS speech. Altogether, these results suggest that full articulatory specification may not always be necessary for inner speech to be produced.

The aim of this study is to examine the physiological correlates of verbal rumination in an attempt to provide new data in the debate between motor simulation and abstraction. A prediction of the *Motor Simulation view* is that verbal rumination, as a kind of inner speech, should be accompanied with activity in speech-related facial muscles, as well as in negative emotion or anxiety-related facial muscles, but should not involve non-facial muscles (such as arm muscles). Alternatively, the *Abstraction view* predicts that verbal rumination should be associated with an increase in emotion-related facial activity, without activity in speech-related muscles and non-facial muscles.

There is strong interest in the examination of physiological correlates of rumination as traditional assessment of rumination essentially consists of self-reported measures. The measurement of rumination as conceptualized by Nolen-Hoeksema (1991) was operationalized by the development of the Ruminative Response Scale (RRS), which is a subscale of the response style questionnaire (Nolen-Hoeksema & Morrow, 1991). The RRS consists of 22 items that describe responses to dysphoric mood that are self-focused, symptom-focused, and focused on the causes and consequences of one's mood. Based on this scale, Treynor, Gonzalez and Nolen-Hoeksema (2003) have offered a detailed description of rumination styles and more recently, Watkins (2004, 2008) has further characterized different modes of rumination. The validity of these descriptions is nevertheless based on the hypothesis that individuals have direct and reliable access to their internal states. However, selfreports increase reconstruction biases (e.g., Brewer, 1986; Conway, 1990) and it is well known that participants have a very low level of awareness of the cognitive processes that underlie and modulate complex behaviors (Nisbett & Wilson, 1977).

In order to overcome these difficulties, some authors have attempted to quantify state rumination and trait rumination more objectively, by recording physiological or neuroanatomical correlates of rumination (for a review, see Siegle & Thayer, 2003). Peripheral physiological manifestations (e.g., pupil dilation, blood pressure, cardiac rhythm, cardiac variability) have been examined during Download English Version:

https://daneshyari.com/en/article/5040478

Download Persian Version:

https://daneshyari.com/article/5040478

Daneshyari.com