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A basic challenge for probabilistic models of cognition is explaining how probabilistically correct solu-
tions are approximated by the limited brain, and how to explain mismatches with human behavior.
An emerging approach to solving this problem is to use the same approximation algorithms that were
been developed in computer science and statistics for working with complex probabilistic models.
Two types of approximation algorithms have been used for this purpose: sampling algorithms, such as
importance sampling and Markov chain Monte Carlo, and variational algorithms, such as mean-field
approximations and assumed density filtering. Here I briefly review this work, outlining how the algo-
rithms work, how they can explain behavioral biases, and how they might be implemented in the brain.
There are characteristic differences between how these two types of approximation are applied in brain
and behavior, which points to how they could be combined in future research.
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1. Introduction

Probabilistic cognition is a natural fit to the kind of problems
posed by the environment: people are faced with noisy and
ambiguous observations about the world, yet need to make good
decisions. Probabilistic models allow for uncertainty and ambigu-
ity to be dealt with appropriately, because instead of incorrectly
assuming that imperfect information is known perfectly, these
models can find the best possible action given that imperfect
information.

These models have had broad success in explaining human
data, accounting for how people are aware of their perceptual
uncertainty and combine it appropriately with prior knowledge
(Kording & Wolpert, 2004; Tassinari, Hudson, & Landy, 2006),
and explaining how people can learn to represent an ambiguous
environment in cognitive tasks (Griffiths, Steyvers, & Tenenbaum,
2007; Kemp & Tenenbaum, 2008). However despite these suc-
cesses, probabilistic models have faced skepticism from two major
sources: evidence of mismatches between human behavior and
probabilistic cognition (Tversky & Kahneman, 1978), and the inher-
ent computational complexity of these models. It just does not
seem like we as humans can do the complex calculations necessary
to arrive at the best answers, and so there must be shortcuts
involved (Anderson, 1991; Simon, 1955; Van Rooij, 2008).
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Fortunately the problem of working with complex probabilistic
models in limited systems has received a lot of attention from
computer scientists and statisticians. Researchers in these fields
have developed algorithms that arrive at good solutions while min-
imizing computational and memory requirements. These algo-
rithms then provide an interesting alternative to extant
heuristics in psychology and neuroscience, and in cognitive science
using these algorithms to explain behavior has been termed
rational process models (Sanborn, Griffiths, & Navarro, 2010). The
advantage of this approach is that when these algorithms are used
in situations for which they are well-adapted, they make proba-
bilistic cognition achievable, but when they are applied to situa-
tions for which they are poorly adapted, they can explain biases
in behavior that cannot be explained by probabilistic models alone.

Computer scientists and statisticians have developed various
types of approximations for probabilistic models, such as
Laplace’s method, sampling algorithms, variational approxima-
tions, and expectation propagation (Bishop, 2006; Doucet, de
Freitas, & Gordon, 2001; Minka, 2001; Neal, 1993; Wainwright &
Jordan, 2008). Here I focus on the two types that have been applied
to approximate probabilistic cognition: sampling and variational
approximations. Sampling algorithms are stochastic, randomly
drawing samples to represent a probability distribution as a collec-
tion of points. While sampling algorithms asymptotically provide
the correct answer, they are less accurate and can show biases
for small numbers of samples. In contrast, variational algorithms
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trade stochastic sampling for deterministic optimization. These
algorithms can be very fast, but are asymptotically biased.

Researchers have used both sampling and variational algo-
rithms as approximations to probabilistic cognition in behavior
and the brain. However these investigations have tended to pro-
ceed separately, with little comparison between the work using
the two types of algorithms. Below, I describe examples of both
types of algorithms, how they can produce behavioral biases, and
how they might be implemented in the brain. A comparison of
the two types shows what each is good for, and how they could
be profitably combined in future work.

2. Sampling approximations

Sampling algorithms are useful for approximating calculations
that involve complex probability distributions because the collec-
tion of samples can simply stand in for the complex distribution
in a calculation. These approximate calculations are asymptotically
correct with an infinite number of samples, but there are generally
no guarantees for smaller numbers of samples.

While it is ideal if samples can be drawn from the distribution
directly, often this is not the case and more sophisticated methods
are required. One commonly used variety of sampling is importance
sampling, which avoids the problem of drawing samples directly
from a complex distribution by first sampling from a similar but
simpler distribution (Bishop, 2006). These samples are weighted
so that they reflect the probability of the complex distribution
and not the actual distribution from which they were drawn.
Importance sampling works well when the simpler distribution is
very similar to the complex distribution, but is inaccurate if these
distributions are very different.

A generalization of importance sampling is particle filtering
(Doucet et al., 2001). This algorithm extends importance sampling
into sequential tasks in which decisions need to be made after each
observation of data. The simplest version of particle filtering draws
samples from the prior distribution and sequentially reweights
these samples by the likelihood of the data as it is observed.
However, this version of particle filtering quickly runs into trouble
because it is likely that the weight for one sample will dominate all
of the rest, effectively yielding only a single sample. More sophis-
ticated particle filters add steps such as replacing the worst sam-
ples with better-performing samples or perturbing the samples
to provide a better overall approximation.

Another commonly used sampling algorithm is Markov chain
Monte Carlo (MCMC; Neal, 1993). MCMC starts at a particular set
of values (the initial state) for each of the random variables and
makes a series of stochastic transitions to new states. By clever
choice of the transition function, the series of states produced are
samples from the distribution of interest. The strength of MCMC
is that not as much needs to be known about the complex distribu-
tion ahead of time, but some downsides are that the initial samples
need to be discarded and that samples are autocorrelated: because
most MCMC samplers preferentially transition to nearby states,
transitions between far-apart states are slower.

2.1. Explaining behavioral biases

Importance sampling, particle filtering, and MCMC have all
been used to explain biases in human behavior. Importance sam-
pling has been formally linked to exemplar models, which are
well-supported models of memory and categorization. This link
generalizes exemplar models to new tasks and allows it to explain
behavioral biases. For example, in reproduction tasks participants’
responses are drawn toward the distribution of stimuli they have
previously been shown. The form of the assimilative effect shows

deviations from what probabilistic models predict, but these devi-
ations can be explained by assuming participants use a restricted
number of samples (Shi, Griffiths, Feldman, & Sanborn, 2010).

Particle filters have been used to explain human biases in a vari-
ety of sequential tasks. Because repeated reweighting effectively
reduces the number of samples, particle filters are useful for
explaining how behavior can be more strongly influenced by early
than late observations: samples consistent with the early observa-
tions initially dominate, and for some types of particle filter this
makes it impossible to draw samples consistent with the late
observations. Particle filters have been used to explain how early
observations can dominate in categorization (Sanborn et al.,
2010), sentence processing (Levy, Reali, & Griffiths, 2009), and cau-
sal learning (Abbott & Griffiths, 2011). Particle filters have also
been used to explain individual variability around the group mean
in learning (Daw & Courville, 2008) and change point detection
(Brown & Steyvers, 2009).

MCMC has been used to explain different kinds of behavioral
biases. Samples generated by MCMC are autocorrelated, and this
property is useful for describing how judgments change slowly
over time. One application of this is to bistable perception, where
the current percept of a figure can be cast as a sample from a bimo-
dal probability distribution over interpretations, and sampling
using MCMC can explain the transition times between percepts
(Gershman, Vul, & Tenenbaum, 2012). Autocorrelation also means
that MCMC is initially influenced by its start state, which has been
used to explain how irrelevant self-generated anchors in reasoning
problems can have an effect on later answers (Lieder, Griffiths, &
Goodman, 2012).

2.2. Implementation in the brain

Proposals have been made for how each of the above sampling
algorithms could be implemented in the brain. For importance
sampling, Shi and Griffiths (2009) proposed that neural tuning
curves were proportional to the likelihood and that the number
of neurons with a particular tuning curve were proportional to
the prior. This scheme was extended to perform inference in a hier-
archical model, which the levels of the model mapped to hierarchi-
cally organized brain regions.

Lee and Mumford (2003) used a similar global organization,
proposing that at each level in the cortical hierarchy probabilistic
cognition was implemented with a particle filter. Messages were
then passed between the levels so that the top-down effects of
context and the bottom-up effects of the stimulus were both incor-
porated. More detailed neural implementation of particle filters are
given by Huang and Rao (2014) and Legenstein and Maass (2014)
using networks of spiking neurons.

Other researchers have described on how populations of neu-
rons could implement MCMC. In these implementations, the state
of the brain corresponds to a sample from a probability distribu-
tion and transitions between neural states correspond to the tran-
sitions that the MCMC algorithm makes (Fiser, Berkes, Orban, &
Lengyel, 2010). Currently there are separate kinds of MCMC imple-
mentations for sampling from continuous variables (Hennequin,
Aitchison, & Lengyel, 2014; Moreno-Bote, Knill, & Pouget, 2011)
and sampling from discrete variables (Buesing, Bill, Nessler, &
Maass, 2011; Probst et al., 2015).

3. Variational approximations

Variational approximations are a second major type of approx-
imation in computer science and statistics, and these algorithms
trade the stochasticity of sampling for the determinism of opti-
mization. Variational algorithms work by first defining a simpler
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