
Dopamine dependence in aggregate feedback learning: A computational
cognitive neuroscience approach

Vivian V. Valentin a,⇑, W. Todd Maddox b, F. Gregory Ashby a

aDepartment of Psychological & Brain Sciences, University of California, Santa Barbara, United States
bDepartment of Psychology, University of Texas, 108 E. Dean Keeton, Stop A8000, Austin, TX 78712-1043, United States

a r t i c l e i n f o

Article history:
Received 13 April 2015
Revised 7 June 2016
Accepted 13 June 2016
Available online 3 September 2016

Keywords:
Computational cognitive neuroscience
Dopamine
Skill learning
Striatal plasticity
Parameter space partitioning

a b s t r a c t

Procedural learning of skills depends on dopamine-mediated striatal plasticity. Most prior work investi-
gated single stimulus-response procedural learning followed by feedback. However, many skills include
several actions that must be performed before feedback is available. A new procedural-learning task is
developed in which three independent and successive unsupervised categorization responses receive
aggregate feedback indicating either that all three responses were correct, or at least one response was
incorrect. Experiment 1 showed superior learning of stimuli in position 3, and that learning in the first
two positions was initially compromised, and then recovered. An extensive theoretical analysis that used
parameter space partitioning found that a large class of procedural-learning models, which predict prop-
agation of dopamine release from feedback to stimuli, and/or an eligibility trace, fail to fully account for
these data. The analysis also suggested that any dopamine released to the second or third stimulus
impaired categorization learning in the first and second positions. A second experiment tested and con-
firmed a novel prediction of this large class of procedural-learning models that if the to-be-learned
actions are introduced one-by-one in succession then learning is much better if training begins with
the first action (and works forwards) than if it begins with the last action (and works backwards).

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Many skills are acquired via procedural learning, which is char-
acterized by gradual improvements that require extensive practice
and immediate feedback (Ashby & Ennis, 2006). Most motor skills
fall into this class (Willingham, 1998), but also some cognitive
skills, including certain types of category learning (Ashby,
Alfonso-Reese, Turken, & Waldron, 1998; Ashby & Maddox, 2005,
2010; Maddox & Ashby, 2004). Much evidence suggests that proce-
dural learning is mediated largely within the striatum, and is facil-
itated by a dopamine (DA) mediated reinforcement learning signal
(Badgaiyan, Fischman, & Alpert, 2007; Grafton, Hazeltine, & Ivry,
1995; Jackson & Houghton, 1995; Knopman & Nissen, 1991). The
well-accepted theory is that positive feedback that follows suc-
cessful behaviors increases phasic DA levels in the striatum, which
has the effect of strengthening recently active synapses, whereas
negative feedback causes DA levels to fall below baseline, which
has the effect of weakening recently active synapses (Schultz,
1998). In this way, the DA response to feedback serves as a

teaching signal, with successful behaviors increasing in probability
and unsuccessful behaviors decreasing in probability.

Experimental studies of DA neuron firing have focused on sim-
ple behaviors in which a single cue is followed by a single discrete
response (e.g., button or lever press) or no response at all. The
seminal finding from these experiments is that DA neurons fire
to reward-predicting cues and unexpected reward (e.g. Schultz,
1998). Despite the importance of this work, it does not address
the role of DA in the learning of skills that include multiple behav-
iors that must be precisely executed in response to discrete cues,
and in which the feedback is delivered only after the final behavior
is complete. Our goal is to investigate the putative role of DA in
these more complex settings. We take an indirect approach by
collecting behavioral data and then testing a wide variety of com-
putational models that make qualitatively different assumptions
about the role of DA in the learning of such multi-step behaviors.

Understanding howmultistep behaviors are learned requires an
understanding of how the feedback after the final behavior is used
to learn the responses to each of the cues in the sequence. One
possibility is that feedback propagates backward through each
sub-behavior in the sequence, such that the learning of the
response to a later cue in the sequence facilitates the learning of
a preceding cue. A wealth of data show that once a cue comes to
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predict reward, it begins to elicit a vigorous response from DA neu-
rons (Pan, Schmidt, Wickens, & Hyland, 2005; Schultz, 1998, 2006;
Waelti, Dickinson, & Schultz, 2001). If a new cue is added before a
learned cue that perfectly predicts reward, then the DA response to
the learned cue shifts back (backpropagates1) to the new (earliest)
cue (Schultz, Apicella, & Ljungberg, 1993). This works well when no
response is required, as in classical conditioning, or in simple
instrumental conditioning with only one available response (e.g.
lever press), or in tasks requiring choices among different cues while
navigating a maze. In such scenarios, DA release due to the reward
prediction of the learned cue serves as a teaching signal to train
the preceding, new cue, and in this way, sequences of cue-cue asso-
ciations can be learned (Suri & Schultz, 2001). Importantly, such
backpropagation of the DA response has only been demonstrated
in tasks in which characteristics of later cues directly depend on
decisions made to earlier cues (i.e., dependent decisions). Unfortu-
nately, almost no empirical data exist on how DA neurons respond
in tasks where a sequence of independent decisions must all be made
correctly to earn positive feedback, nor have any models been
proposed. If several independent decisions about unrelated cues
are made in a row, and each has to be correct to earn positive
feedback at the end of the sequence, then an earlier cue is not a
predictor of a later cue.

Current efforts to study the learning of sequential, multistep
decisions have focused on tasks in which the first-step choice
predicts the available choices in the next step (Daw, Gershman,
Seymour, Dayan, & Dolan, 2011; Gläscher, Daw, Dayan, &
O’Doherty, 2010;Walsh & Anderson, 2011). This is important work,
and many real-life tasks include such dependencies between
sequential cues. However, the demonstration in such work that
the effect of the feedback backpropagates to earlier cues in the
sequence confounds two issues. One possibility is that the back-
propagation occurs only because of the perfect dependency, and
another is that all sequential skills, including those with indepen-
dent actions, benefit from such backpropagation. This article inves-
tigates the backpropagation of the feedback signal during the
learning of a sequence of independent skills. Our results strongly
contradict the latter of these two hypotheses. In fact, we show that
virtually all models that predict any type of backpropagation of the
DA signal to earlier independent cues are incompatible with our
results. Furthermore, our results also suggest that any such back-
propagation that did occur must have a detrimental effect on
learning. Even models that use eligibility traces to update distant
cues with the feedback signal (instead of the backpropagation) fail
to account fully for our results.

To study how feedback provided at the end of multiple indepen-
dent behaviors affects the learning of each behavior in the
sequence, we developed a new experimental paradigm called the
aggregate-feedback procedural category-learning task (for a similar
declarative memory-based task, see Fu & Anderson, 2008). In this
task, three highly discriminable visual images are presented
sequentially, each requiring an A or B category response. Feedback
is given only after all three responses are complete. Positive feed-
back is given if all three responses were correct, and negative feed-
back is given if any of the three responses were incorrect, without
any information about which response or responses were in error.

This study addresses a number of fundamental questions
regarding DA’s involvement in aggregate-feedback learning. These
include the following: How do the DA reward prediction signals
that develop during learning respond to multiple independent cues
before feedback? How does the DA release to the reward prediction
of a cue impact learning of cues earlier in the sequence? And do

learning rates for cues depend on how far back in time they are
from the feedback? We took a computational cognitive neuroscience
approach to address these questions (Ashby & Hélie, 2011). First,
we collected behavioral data from human participants in the
aggregate-feedback category-learning task. Second, we used a
computational approach called parameter space partitioning
(PSP; Pitt, Kim, Navarro, & Myung, 2006) that allowed us to inves-
tigate the ability of a broad class of alternative procedural-learning
models to account for our results. As we will see, none of these
models successfully accounts for all aspects of our data. Third,
we used these models to make novel predictions about which of
two different training procedures is optimal with aggregate-
feedback. Fourth, we tested these predictions with behavioral data
from human participants, and identified the best training regime
for procedural learning with aggregate feedback.

2. Experiment 1

Our goal was to extend behavioral neuroscience work on DA
neuron firing properties to human behavioral experiments. The
relevant behavioral neuroscience studies almost all used some
form of classical or instrumental conditioning. So the ideal task
would share properties with conditioning studies and present
some nontrivial cognitive challenges. Our solution was to use an
unstructured category-learning task in which highly unique
stimuli are randomly assigned to each contrasting category, and
thus there is no rule- or similarity-based strategy for determining
category membership. This task is similar to instrumental condi-
tioning tasks in which animals must learn to emit one response
to one sensory cue and another response to a different cue (e.g.,
turn left in a T-maze to a high-pitched tone and turn right to a
low-pitched tone). But it is also similar to high-level categorization
tasks that have been studied for decades in the cognitive psychol-
ogy literature. For example, Lakoff (1987) famously motivated a
whole book on a category in the Australian aboriginal language
Dyirbal that includes seemingly unrelated exemplars such as
women, fire, dangerous things, some birds that are not dangerous,
and the platypus. Similarly, Barsalou (1983) reported evidence that
‘ad hoc’ categories such as ‘‘things to sell at a garage sale” and
‘‘things to take on a camping trip” have similar structure and are
learned in similar ways to other ‘common’ categories. Thus, the
unstructured category-learning task that forms the foundation of
our studies is simple enough that we should be able to relate our
results to those from instrumental conditioning studies, while
resembling the structure of ad hoc categories.

Although intuition might suggest that unstructured categories
are learned via explicit memorization, there is now good evidence
– from both behavioral and neuroimaging experiments – that the
feedback-based learning of unstructured categories is mediated
by procedural memory. First, several neuroimaging studies of
unstructured category learning found task-related activation in
the striatum, as one would expect from a procedural-learning task,
and not in the hippocampus or other medial temporal lobe struc-
tures, as would be expected if the task was explicit (Lopez-
Paniagua & Seger, 2011; Seger & Cincotta, 2005; Seger, Peterson,
Cincotta, Lopez-Paniagua, & Anderson, 2010). Second, Crossley,
Madsen, and Ashby (2012) reported behavioral evidence that
unstructured category learning is procedural. A hallmark of proce-
dural learning is that it includes a motor component. For example,
switching the locations of the response keys interferes with
performance in the most widely studied procedural-learning task
– namely the serial reaction time task (Willingham, Wells,
Farrell, & Stemwedel, 2000). In addition, several studies have
shown that switching the response keys interferes with perfor-
mance of a categorization task known to recruit procedural

1 Note, our use of the word ‘‘backpropagate” refers to the phenomenological
dynamics of DA firing to reward predicting events, and not to the popular
backpropagation algorithm that is commonly used to train artificial neural networks.
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