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a b s t r a c t

As Rubin’s famous vase demonstrates, our visual perception tends to assign luminance contrast borders
to one or other of the adjacent image regions. Experimental evidence for the neuronal coding of such
border-ownership in the primate visual system has been reported in neurophysiology. We have investi-
gated exactly how such neural circuits may develop through visually-guided learning. More specifically,
we have investigated through computer simulation how top-down connections may play a fundamental
role in the development of border ownership representations in the early cortical visual layers V1/V2. Our
model consists of a hierarchy of competitive neuronal layers, with both bottom-up and top-down synap-
tic connections between successive layers, and the synaptic connections are self-organised by a biologi-
cally plausible, temporal trace learning rule during training on differently shaped visual objects. The
simulations reported in this paper have demonstrated that top-down connections may help to guide
competitive learning in lower layers, thus driving the formation of lower level (border ownership) visual
representations in V1/V2 that are modulated by higher level (object boundary element) representations
in V4. Lastly we investigate the limitations of our model in the more general situation where multiple
objects are presented to the network simultaneously.

� 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As Rubin’s famous vase (Fig. 1) demonstrates, our visual percep-
tion tends to assign luminance contrast borders to one or other of
the adjacent image regions, as if they serve as occluding contours
(von der Heydt, Zhou, & Friedman, 2003). This is an example of fea-
ture binding in vision, in this case binding a luminance contrast
border to a particular object. Representing such binding relation-
ships between visual features is essential to the ability of the visual
system to interpret and make sense of complex visual scenes.
Experimental evidence for the neuronal coding of such border-
ownership in the primate visual system has arisen in a neurophys-
iology study carried out by Zhou, Friedman, and von der Heydt
(2000).

Zhou et al. (2000) have shown that the responses of simple cells
in earlier cortical stages of visual processing such as V1 and V2,
which respond preferentially to oriented edges, are also modulated
by which side of an object or figure the edge occurs on. This is the
case even when the figure/background cues lie well outside the
classical receptive field of the neuron, which in area V1 is approx-

imately 1 degree in size. Such neurons are referred to as border
ownership cells. Sugihara, Qiu, and von der Heydt (2011) later
reported that the border ownership signal emerges with a latency
of 61 ms, which is about 13 ms later than the onset of orientation
selectivity. This suggests that the global image context specifying
border ownership modulates the activity of these neurons. In other
words, there must be a mechanism that enables the contextual
information to be conveyed to these early stage visual neurons in
V1 and V2. It has been proposed that these kinds of border owner-
ship responses in area V1 represent a form of feature binding, and
so may be important for understanding how primate vision may
solve the problem of feature binding more generally.

Some theoreticians have suggested that the context integration
required for border ownership representations in V1 and V2 can be
achieved via lateral propagation of signals within a layer via hori-
zontal fibres (Baek & Sajda, 2005; Nishimura & Sakai, 2004;
Zhaoping, 2005). However, Sugihara et al. (2011) have argued that
the conduction velocity of horizontal fibres is too slow (most of
them being between 0.1 and 0.4 m/s (Angelucci & Bullier, 2003))
to produce the border ownership signals within the short latency
observed in neurophysiology studies. Furthermore, Sugihara et al.
(2011) showed that varying the distance between the target border
and the visual features that carry contextual information about the
‘owner’ of the border does not in fact influence the latency before
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the border ownership signals arise. Therefore, they concluded that
context influence by horizontal signal propagation alone is highly
unlikely.

On the other hand, the feedforward (bottom-up) and feedback
(top-down) connections between successive visual stages have
fast-conducting axons, with conduction velocities of between 2
and 6 m/s, which is about ten times faster than cortical horizontal
fibres (Angelucci & Bullier, 2003). Accordingly, both Craft, Schtze,
Niebur, and von der Heydt (2007) and Jehee, Lamme, and
Roelfsema (2007) have proposed models that involve hypothetical
‘grouping circuits’ within a higher cortical layer that capture the
contextual information about local boundary elements, and these
contextual signals are then relayed down through feedback con-
nections to modulate responses in an earlier layer. They proposed
that the larger receptive fields in the higher layer allow the net-
work to employ ‘grouping circuits’ without having to rely on slow
lateral propagation of signals. Nevertheless, it still remains a chal-
lenge to understand exactly how such neural circuits may be
learned. The objective of the current study is to investigate the
learning mechanisms that underpin the development of border
ownership cells in the primate visual brain, in terms of synaptic
modification guided by visual experience and consequent neural
adaptation throughout a hierarchy of cortical stages. Moreover,
given the proposed role of border ownership cells in feature bind-
ing, which is essential for integrating the visual features within a
scene, the simulations described below provide a step towards
understanding how the brain learns to make sense of the visual
world.

One higher visual area that might provide appropriate top-
downmodulatory signals is V4, which contains neurons that repre-
sent the localised boundary contour elements of objects (Layton,
Mingolla, & Yazdanbakhsh, 2012). The responses of these neurons
are sensitive to both the shape of the boundary element and where
the element is with respect to the centre of mass of the object
(Pasupathy & Connor, 2001; Pasupathy & Connor, 2002). Hence
each of the neurons encodes that a specific border element belongs
to a particular object - i.e. a kind of border ownership representa-
tion. A subpopulation of these neurons will provide a distributed
representation of the entire boundary of the object. Furthermore,
the neurons are able to respond invariantly as the object is shifted
across different locations on the retina over a modest range.

The visually-guided development of such V4 cells has been pre-
viously investigated in a computational modelling study with an

established neural network model, VisNet, of the primate ventral
visual pathway (Eguchi, Mender, Evans, Humphreys, & Stringer,
2015). The network architecture consisted of a hierarchy of cortical
visual layers, with each layer modelled as a competitive neural net-
work (Wallis & Rolls, 1997). Whenever an image was presented to
the network, visual signals propagated through feedforward plastic
synaptic connections between successive layers. Within each com-
petitive layer, the excitatory cells competed with each other to
respond to the current visual stimulus. In the brain, competition
between excitatory cells is implemented via inhibitory interneu-
rons. Although to save computational expense in VisNet, competi-
tion between excitatory neurons is modelled more directly using
local filters. During an initial period of training with visual objects,
the feedforward synaptic connections between successive layers of
the network are continually modified using local, biologically plau-
sible, associative learning rules. The competition within each layer
then forces individual neurons to learn to respond selectively to a
particular stimulus class, with different neurons responding to dif-
ferent kinds of stimulus. Competitive learning is a very simple
unsupervised learning paradigm that allows neurons to discover
important features of the stimulus input patterns (Rumelhart &
Zipser, 1985). Eguchi et al. (2015) showed that the gradual increase
in the receptive field size of neurons through successive layers of
the visual system (Gross, Bender, & Rocha-Miranda, 1969; Pettet
& Gilbert, 1992) allows V4 neurons access to local image informa-
tion specifying how localised luminance contrast contours belong
to adjacent object regions. As a result, cells in the higher layer of
their hierarchical competitive neural network model developed
neuronal response properties similar to those reported by
Pasupathy and Connor (2001, 2002) when the model was trained
on a number of real world objects.

In this paper, we extend the previous purely feedforward model
of Eguchi et al. (2015) by incorporating both feedforward (bottom-
up) and feedback (top-down) connections. This extended model
architecture is used to investigate how the edge-detecting simple
cells in the earliest layer of the network, which corresponds to
visual areas V1/V2 in the primate brain, may develop border own-
ership representations via top-down modulation from neurons in
the output layer, which corresponds to visual area V4. The neces-
sary feedforward and feedback synaptic connectivity within the
network is set up by visually-guided learning using a biologically
plausible, local, trace learning rule (Foldiak, 1991) as the network
is trained on a collection of differently shaped visual object stimuli.
We go on to show how these border ownership signals in the ear-
liest layer evolve dynamically during the 300 ms time course of a
stimulus presentation, as reported by Sugihara et al. (2011) and
Jehee et al. (2007). We then investigate the limitations of the
model in the more general situation where multiple objects are
presented to the network simultaneously.

1.1. Hypothesis

Eguchi et al. (2015) have shown that when an established hier-
archical neural network model of the primate ventral visual path-
way, VisNet (Wallis & Rolls, 1997), is trained on 177 images of real
world objects, which rotated in plane through 360� and shifted
across a 3 � 3 grid of nine different retinal locations, the neurons
in the higher layers of the model learn to represent local boundary
contour elements. Individual neurons are tuned to boundary ele-
ments with a specific curvature at a particular location with
respect to the centre of mass of the object. Moreover, the neurons
respond invariantly as an object is translated across different reti-
nal locations. These are the same neuronal response properties as
observed in area V4 of the primate visual system by Pasupathy
and Connor (2002). Although they have reported that the transla-
tion invariant responses of V4 neurons are only over a modest

Fig. 1. Rubin’s Vase (Rubin, 1915).
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