
A node-based version of the cellular Potts model

Marco Scianna n, Luigi Preziosi
Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

a r t i c l e i n f o

Article history:
Received 21 March 2016
Received in revised form
25 June 2016
Accepted 27 June 2016

Keywords:
Cellular Potts model
Multiscale model
Cell surface rearrangement
Cell membrane node
Domain discretization

a b s t r a c t

The cellular Potts model (CPM) is a lattice-based Monte Carlo method that uses an energetic formalism to
describe the phenomenological mechanisms underlying the biophysical problem of interest. We here
propose a CPM-derived framework that relies on a node-based representation of cell-scale elements. This
feature has relevant consequences on the overall simulation environment. First, our model can be im-
plemented on any given domain, provided a proper discretization (which can be regular or irregular,
fixed or time evolving). Then, it allowed an explicit representation of cell membranes, whose displace-
ments realistically result in cell movement. Finally, our node-based approach can be easily interfaced
with continuous mechanics or fluid dynamics models. The proposed computational environment is here
applied to some simple biological phenomena, such as cell sorting and chemotactic migration, also in
order to achieve an analysis of the performance of the underlying algorithm. This work is finally
equipped with a critical comparison between the advantages and disadvantages of our model with re-
spect to the traditional CPM and to some similar vertex-based approaches.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The evolution of biological systems is determined by mechan-
isms and processes operating at different spatiotemporal scales,
i.e., from the microscopic/molecular level to the macroscopic/
multicellular level. Each scale can be properly approached with
selected mathematical methods. In this respect, individual cell-
based models (IBMs) are particularly suitable to describe meso-
scopic cell-level dynamics. They in fact allow to preserve the
identity of the single component individuals of the system and to
capture their behavior and mutual interactions. This family of
theoretical approaches can be then classified according to the type
of representation given to each cell, which may consist in a ma-
terial point, an undeformable sphere or ellipsoid or in a deform-
able polygon or subset of domain elements.

One of the well-known IBMs is the cellular Potts model (CPM,
also called the Glazier–Graner–Hogeweg model, see [40–43,64,92]
for reviews). The CPM is a grid-based Monte Carlo method, which
implements an energy minimization principle to determine the
evolution of the simulated system. All CPMs are based on regular
numerical lattices as domains, and define a list of discrete objects.
They are spatially extended cell-scale elements, which consist of
patches of lattice sites sharing the same (integer) identification

number. Continuous fields can be included in the modeling en-
vironment as well, conferring the CPM a multiscale-hybrid nature.
They represent the spatio-temporal evolution of microscopic
quantities, such as diffusive ions and molecules. Attributes of
discrete individuals and rules for their dynamics and for their in-
teractions with selected fields are described by an effective po-
tential formalism, which results in a system energy given by a
Hamiltonian. This functional describes indeed the state of the
system, whose rearrangements are driven by an algorithm of
stochastic minimization, i.e., an iterative Metropolis procedure
which accounts for a probabilistic acceptance of random updates
of lattice configurations. As long as a biological mechanism can be
described with an energetic formalism, it can be included in the
CPM framework. In this respect, the CPM is not specific for a given
type of biological problems, but it can be rather considered as a
framework for model building. For these reasons, the CPM method
is becoming an increasingly common technique for the mathe-
matical modeling of a wide range of phenomena.

In this foundational work, we present a new version of the
CPM, which is still based on an energy minimization philosophy,
but which relies on a vertex-based representation of the discrete
cell-scale objects. Besides its intrinsic novelty, our approach has
some advantages from a modeling point of view. For instance, it
can be employed on every given physical domain (provided a
proper discretization): this may be useful for a computational
coupling with selected continuum mechanics or fluid dynamics
models. Our approach then allows to explicitly represent cell
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membrane, with its extended protrusions (e.g., filopodia, pseudo-
podia), and to avoid the introduction of a generalized medium
element when it is not necessary. Such main model features will
be presented in Section 2. In particular, we will describe the Me-
tropolis algorithm underlying our approach and propose some
possible Hamiltonians that can be implemented in the resulting
computational framework. We will further indicate some proce-
dures to implement more complex cell dynamics (i.e., division,
compartmentalization). Section 3 will be instead focused on
sample applications, dealing with single cell and multicellular
dynamics. Such simulation outcomes will allow also to achieve a
qualitative relationship between variations in some relevant
model parameters and the resulting system evolution. An analysis
of the computational efficiency of our method, compared with the
traditional version of the CPM, will be instead provided in Section
4. This work will be finally equipped by a detailed discussion,
where the advantages and the disadvantages of the proposed
model with respect to both classical CPM approaches and similar
vertex-based models will be commented.

2. Proposed mathematical model

As traditional Potts models, our approach includes both dis-
crete cell-scale elements and continuous fields, while the evolu-
tion of the system comes from an iterative and stochastic mini-
mization of its free energy.

The domain of our method can be any physical region Ω ⊂ 2,
equipped by a proper discretization, that can be regular (e.g., in the
case of triangular or square grid elements) or irregular (e.g., in the
case of Voronoi tessellations), fixed or adaptative according to the
system dynamics (see Fig. 1(A)). This is the first relevant difference

with respect to classical CPMs which can be only employed on
rigid lattices formed by equivalent (square or hexagonal) sites. Let
us then define with

{ }Ω = ∈ = … ( ) j Jx : 1, , 1j
2

the set of the spatial locations of the vertices of the domain dis-
cretization, where the integers = …j J1, , their tracking numbers.
The first-nearer neighborhood of a given mesh vertex j is then
identified with

{ } ( )Ω Ω= ∈ ≠ 2k j k jx : and belongs to the same grid element as ,j k

as represented in Fig. 1(B).
We then consider a system formed by Nc cells (or cell-scale

elements). Each cell = …c N1, , c is assumed to be defined by a
given set of numerically ordered membrane nodes i, where

= …i V1, , c (Vc indicates the total number of nodes characterizing
the c-th individual). ( )txc i, then indicates the actual location within
the domain of node i of cell c. In this respect, if, for instance, the
node i¼9 of the cell c¼3 coincides, at a given time step t, with the
grid vertex j¼23, we can write ( ) =tx x3,9 23. Indeed, each cell c is
defined, at a given time step t, by the following subdomain:

{ }Ω Ω( ) = ∈ = ( ) = … ( )t t i Vx x x: , with 1, , . 3c
j j c i c,

Remark. For the sake of clarity, we underline that the term “ver-
tex” is used to indicate the junctions between domain grid ele-
ments. The term “node” instead denotes the punctual “hotspots”
that identify each cell and that might be thought also as clusters of
adhesive molecules, as we will see in the following.

The membrane of a cell c can be defined, in general, by any close
un-knotted curve connecting in the right order the component nodes

Fig. 1. (A) Examples of 2D discretized domains Ω containing two representative cells, c (defined by Vc¼9 membrane nodes) and ′c (defined by =′V 6c membrane nodes).
(B) First-nearer neighborhood Ωj of a generic grid vertex j, which is composed of the set of manually encircled grid vertices. (C) Sample procedure to properly reproduce in
the model a complex cell shape (see the text for details). (D) Basic Monte Carlo Step (MCS) of the Metropolis algorithm. A membrane node i of a cell c, which actually
coincides with grid vertex j (i.e., ( ) =tx xc i j, ), is selected at random and attempts move to one of the free neighboring grid vertex locations Ω∈xk j . In particular, if the target
grid vertex is within the cell (say, ″k ), c is retracting (see the dark-dashed line). Otherwise, if the target grid vertex is outside the cell (say, ′k ), c is protruding (see the blue-
dashed line). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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