
Subject transfer BCI based on Composite Local Temporal Correlation
Common Spatial Pattern

Sepideh Hatamikia n, Ali Motie Nasrabadi
Department of Biomedical Engineering, Shahed University, Tehran, Iran

a r t i c l e i n f o

Article history:
Received 18 March 2015
Accepted 1 June 2015

Keywords:
Common Spatial Patterns
Brain–computer interface
Subject transfer
Local temporal

a b s t r a c t

In this paper, a subject transfer framework is proposed for the classification of Electroencephalogram
(EEG) signals in brain–computer interfaces (BCIs). This study introduces a modification of Common
Spatial Pattern (CSP) for subject transfer BCIs, where similar characteristics are considered to transfer
knowledge from other subjects' data. With this aim, we proposed a new approach based on Composite
Local Temporal Correlation CSP, namely Composite LTCCSP with selected subjects, which considers the
similarity between subjects using Frobenius distance. The performance of the proposed method is
compared with different methods like traditional CSP, Composite CSP, LTCCSP and Composite LTCCSP.
Experimental results have shown that our proposed method has increased the performance compared to
all these different methods. Furthermore, our results suggest that it is worth emphasizing the data of
subjects with similar characteristics in a subject transfer diagram. The suggested framework, as
demonstrated by experimental results, can obtain a positive knowledge transfer for enhancing the
performance of BCIs.
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1. Introduction

The automatic classification of movement-related Electroence-
phalogram (EEG) signals is one of the most challenging fields of
brain–computer interfaces (BCIs). In a BCI system, users can

manipulate the system just by thinking about what they want it
to do within a limited set of choices. There are several types of
EEG-based BCIs that include mental tasks [1], P300 [2], neural
responses elicited during visual stimulus flickering [3] and motor
imagery [4]. In the BCIs based on responses to mental tasks,
different non-movement mental tasks lead to different EEG
patterns associated with these mental tasks. In a P300-based
BCI, in order to trigger a P300 waveform in a subject's brain
activity, the subjects must focus their attention on a specified
stimulus that randomly appears among many others. By detecting
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the P300 component, the system is enable to recognize the
demanded stimulus and hence the demanded command. Some
BCIs use visual evoked potentials (VEPs), which are electrical
potential-differences originating from the scalp after a visual
stimulus flickering like a flash-light. The aim of the VEPs-based
BCIs is to identify this frequency reliably with high accuracy. Motor
imagery based BCIs use Sensory Motor Rhythms (SMR) informa-
tion to translate a subject's motor intention into a control signal to
have efficient control over an output device such as a neuroprosth-
esis, a wheelchair, or a computer. Motor imagery tasks are
associated with an increase or attenuation of localized brain
rhythms activity called Event-Related Synchronization (ERS) or
Event-Related Desynchronization (ERD) [5]. Fig. 1 shows the basic
scheme of a general EEG-based BCI system. One of the most
popular and efficient techniques to extract ERD/ERS related
features is the Common Spatial Pattern (CSP), which is widely
used for motor imagery BCI designs [6,7]. The CSP method aims to
find spatial projections (filters) that simultaneously maximize the
variance of one class while minimizing the variance of the other
class [8,9]. Despite the efficiency and popularity of CSP in design-
ing BCIs, this algorithm has two inherent drawbacks, one is the
high sensitivity to potential outliers and artifacts and the another
is the overfitting with small training sets [10]. Traditional CSP
considers each time point of all EEG channels as a vector in the
feature space and maps it into another space using the average
covariance matrix of all EEG signals [11]. In such a situation, the
temporally local structure of the EEG signals is not considered and
the covariance matrix of all EEG signals is affected by the noise of
one tiny time slot, which makes errors in estimating spatial filters
[11]. To overcome the above-mentioned inconvenience of tradi-
tional CSP, the Local Temporal Common Spatial Patterns (LTCSP)
method has been proposed [12]. LTCSP considers temporally
neighboring samples and uses the local temporal information by
making a time-dependent adjacency graph. Like CSP, this method
is computationally simple, but it is less sensitive to noise and
artifacts. Wang and Zheng demonstrated that in a two class motor
imagery based BCI problem, LTCSP achieves more discrimination
compared to the CSP method. Another extension of CSP in the
literature which considered the local structure of EEG signals is
Local Temporal Correlation Common Spatial Patterns (LTCCSP).
LTCCSP uses local temporal correlation information to further
improve the estimation of covariance matrices. Compared to CSP
and LTCSP, the LTCCSP method has shown the best performance

under outlier condition [13]. In the LTCSP method, the Euclidean
distance between different N-channel EEG recording vectors at
different time points is calculated to construct a weight matrix for
the covariance matrices while in the LTCCSP, the correlation
measure is used to construct the weight matrix. Correlation is
introduced as a more reasonable measure to construct the weight
matrix [13].

Most of the proposed CSP-based techniques in the literature
use subject-specific covariance matrices to construct user-specific
spatial filters. Limited and user-dependent training samples may
lead to overfitting or suboptimal spatial filters and decrease the
performance of BCIs. To overcome such inconveniences, one idea is
to add a priori information to the CSP process using regularization
terms [10,14]. In this case, the useful information obtained from
other subjects (named as source subject group) involving the same
task is transferred to the target subject (the subject whose brain
signals would be classified), which is called subject-to-subject
transfer [15]. Fig. 2 presents a proposed schedule for subject
transfer based BCIs. With this aim, different regularized CSP
methods have been proposed in the literature. Kang et al. pro-
posed a regularized CSP method called Composite CSP, which aims
to perform subject-to-subject transfer by the regularization of the
covariance matrices using the other subject's information [15].
Their suggested regularized method used linear combination of
covariance matrices calculated from the other subjects' data. One
approach was regularized CSP with generic learning proposed by
Lu et al. [14]. This method attempts to shrink the covariance
matrix into both the generic and identity matrix, where the
generic matrix is calculated using the covariance matrices of other
subjects. Another regularized method that was used in the BCI
literature is invariant CSP, which tries to find the filters invariant to
a given source of noise [16,10]. All the mentioned regularized CSP
methods have shown higher performance than traditional CSP,
especially for subjects with small training samples [10]. In all of
the above methods, the data of each subject from the source
subject group has the same role in regularization of the covariance
matrix. Indeed, the similarity between the signal characteristics of
the target subject and all other subjects is not considered in the
regularization process. However, owing to the inter-subject varia-
bility, it is unreasonable to easily add the other subject's data to
the training data of the target subject. Indeed, if data from a large
group of subjects is available, it may not be the best option to use
all of them in regularizing the covariance matrix due to the large

Fig. 1. Basic scheme of a general EEG-based BCI system. While a user performs mental tasks, the EEG signals are acquired and pre-processed. With feature extraction and
classification stages, as parts of a machine learning system, the user intentions are predicted. These predictions can be used for controlling output devices.
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