
A novel electrocardiogram parameterization algorithm
and its application in myocardial infarction detection

Bin Liu a,1, Jikui Liu b,1, Guoqing Wang c,nn, Kun Huang d, Fan Li c, Yang Zheng a, Youxi Luo b,e,
Fengfeng Zhou b,n

a Cardiovascular Disease Center, First Hospital of Jilin University, Changchun 130021, Jilin, PR China
b Shenzhen Institutes of Advanced Technology, and Key Lab for Health Informatics, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, PR China
c Key Laboratory of Zoonosis, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun 130021, Jilin, PR China
d Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
e School of Science, Hubei University of Technology, Wuhan 430068, PR China

a r t i c l e i n f o

Article history:
Received 7 February 2014
Accepted 11 August 2014

Keywords:
Bioinformatics
Health informatics
Polynomial fitting function
Electrocardiogram
Myocardial infarction
Prediction

a b s t r a c t

The electrocardiogram (ECG) is a biophysical electric signal generated by the heart muscle, and is one of
the major measurements of how well a heart functions. Automatic ECG analysis algorithms usually
extract the geometric or frequency-domain features of the ECG signals and have already significantly
facilitated automatic ECG-based cardiac disease diagnosis. We propose a novel ECG feature by fitting a
given ECG signal with a 20th order polynomial function, defined as PolyECG-S. The PolyECG-S feature is
almost identical to the fitted ECG curve, measured by the Akaike information criterion (AIC), and
achieved a 94.4% accuracy in detecting the Myocardial Infarction (MI) on the test dataset. Currently ST
segment elongation is one of the major ways to detect MI (ST-elevation myocardial infarction, STEMI).
However, many ECG signals have weak or even undetectable ST segments. Since PolyECG-S does not rely
on the information of ST waves, it can be used as a complementary MI detection algorithm with the
STEMI strategy. Overall, our results suggest that the PolyECG-S feature may satisfactorily reconstruct the
fitted ECG curve, and is complementary to the existing ECG features for automatic cardiac function
analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Myocardial infarction (MI) is the symptom of heart cell injury
due to the lack of oxygen, and is usually caused by the buildup of
white blood cells in the cardiac vessels [1]. MI is one of the top two
cardiovascular diseases in the United States, and is notorious for its
fatality rate and frequent recurrences [2]. MI may be diagnosed
from electrocardiogram (ECG) signals, biochemical biomarkers and
echocardiography imaging [3]. But its early and precise detection
still remains challenging, due to the weak MI-specific association
in the aforementioned data types, and the prolonged data gen-
eration steps [1,3]. Both data precision and clinician experience
play essential roles in MI detection.

MI may be diagnosed by the detection of significant changes in
the ST segment or Q wave in the subject's ECG signal [1]. The ECG
represents one of the major features for MI determination since
the data are easy to collect and require only a short sampling
duration. But the diagnostic criteria are difficult to follow due to
the inexplicitness and ECG individualized polymorphism. Even
experienced cardiologists may only recognize 82% of the ST-
segmental elevation in MI subjects [4]. To facilitate ECG-based
MI detection for inexperienced clinicians or non-cardiologists, a
number of ECG analysis algorithms were proposed for automatic
MI detection. But the detection accuracy of these algorithms
remains to be improved for practical clinical applications. After
the wavelet transformation of the ECG signals, Al-Naima and his
colleagues applied a Multi-Layer Perceptron Neural Network
model to the detection of MI subjects, and achieved 90% accuracy
[5]. Chang et al. combined the power of the Hidden Markov Model
(HMM) and Gaussian Mixture Model (GMM), and achieved 82.5%
accuracy [6].

This study proposes the development of a novel ECG feature by
fitting the ECG signal with a polynomial function. The polynomial
function fits the ECG curve with high accuracy, and the fitted
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coefficients are defined to be the ECG representing features. The
optimal parameters of this algorithm were determined using
clinically collected ECG data from the PTB database. This new
ECG feature was applied and tested on the MI detection problem,
and achieved 94.4% in overall accuracy.

2. Material and methods

2.1. Data sources

The ECG data were collected from the Physikalisch-Technische
Bundesanstalt database (PTBdb) [7]. 148 myocardial infarction (MI)
patients and 52 healthy subjects were digitalized to 1000 sampling
frequency, and the signals from conventional 12 leads (i, ii, iii, avr,
avl, avf, v1, v2, v3, v4, v5, v6) were retrieved for this study.

2.2. Signal pre-processing

All the ECG signals were processed in the following steps. First,
a discrete wavelet transformation (DWT) was conducted to
remove high-frequency noise and baseline shifting. DWT works
well on removing the inter-signal dependence among multiple
signals, and can achieve non-redundant signal decomposition [8].
An ECG signal has the frequency range of 0.5–100 Hz [9]. The noise
in the ECG signals mainly occurs at frequencies higher than
100 Hz, and the baseline shifting is usually distorted by the signals
lower than 0.5 Hz in frequency [10]. In this study, the coif4 mother
wavelet was used, because its shape is very similar to the ECG
signals, and it is thus is a good representative for the signal [11].

Next, all the R peaks in the ECG signals were detected using the
wavelet transformation. QRS waves are the major representative
points in ECG signals, and most of the automatic ECG analysis
algorithms are based on the correct detection of these waves. A
peak usually occurs in the wavelet-transformed R waves, and this
change may be captured by levels 3 and 4 of the quadratic spline
mother wavelet, which ranges between 15 and 25 Hz [12,13]. Level
4 is excluded since it may be affected by the P waves [14].

All the ECG signals are split into ECG cycles by the detected R
peaks. Although an ECG cycle is usually defined as a continuous
segment of PQRST waves, no commonly accepted definition is
available for the exaction of boundaries for each ECG cycle. The R
peak is the most conspicuous wave pattern, and is the easiest wave
to detect among the PQRST waves. Since this study requires an
objective splitting of ECG signals into cycles, R peaks are chosen as
the ECG cycle boundaries.

In order to make different ECG signals comparable to each other,
the third step normalized a given ECG cycle into [0, 1]� [0, 1] on
both the time and voltage axis, as described previously [15]. The
ECG baseline drifting, respiration-induced QRS complex change,
and other fluctuations may affect some normalization features. But
this study proposes an objective ECG normalization algorithm, and
its classification performance will be evaluated on a real dataset in
this study. Such a scaled ECG curve is defined as a Unified ECG Cycle
(UEC), and the scaling factors for time and voltage are defined as
time (TF) and voltage factors (VF), respectively. The two factors TF
and VF reflect the differences in the ranges of durations and
voltages of different ECG cycles.

2.3. ECG polynomial fitting algorithm (PolyFit)

This study proposes a polynomial function to fit the ECG
signals, and represents each ECG cycle as a vector of the coeffi-
cients of this polynomial function. With the rapid increase of the
sampling rate, each ECG cycle has �1000 data points under the
current technology (1 kHz sampling rate). So a polynomial

function may significantly reduce the data dimensionality, if its
order is smaller in magnitude than 1000.

For a given short period of ECG signal {(xi, yi)} (i¼1, 2,…,m), a
kth order polynomial fitting function PolyFit(x) is defined as:

PolyFitðxÞ ¼ a0þa1xþ⋯þakx
k ð1Þ

Then the least square rule is facilitated to minimize the sum of
squared deviations between the fitting curve and the ECG cycle.
The fitting optimization function is defined as:

min R2 ¼ min ∑
n

i ¼ 1
½yi�ða0þa1xiþ⋯akx

k
i Þ�2 ð2Þ

The vector of coefficients 〈a0, a1,…, ak〉 is calculated using the
function polyfit and polyval in Matlab.

2.4. PolyFit-based ECG parameterization algorithm (PolyECG)

A Unified ECG Cycle (UEC)C¼{(xi, yi)} (i¼1, 2,…, m) is one ECG
cycle between two R peaks, and its time and voltage factors are
defined as TF(C) and VF(C). As defined in the above sections, 0rxi,
yir1 (i¼1, 2,…,m). If the polynomial fitting function PolyFit(x)¼
a0þa1xþ⋯þakx

k, the complete UEC curve C is transformed as a
parameter vector PolyECG-C(C, k)¼ 〈a0, a1,…, ak, TF(C), VF(C)〉. A
refined ECG parameterization algorithm is further defined as the
PolyECG’s splitting version; PolyECG-S(C, k)¼PolyECG-C(C1, k)[
PolyECG-C(C2, k), where C¼C1[C2, and x(C1)r0.5, x(C2)40.5.
The hypothesis for this equal-sized splitting is that the PQR and
ST segments in an ECG cycle have significantly different shape
patterns, and may need different sets of fitting parameters. This
hypothesis will be validated and supported in the following
section. The parameters in the vector are regarded as the features
of this UEC, and further screened for the best feature subset. There
are (kþ1þ2) and (2kþ2þ2) parameters/features for PolyECG-C(C,
k) and PolyECG-S(C, k), respectively.

2.5. Model evaluation with the Akaike information criterion (AIC)

The Akaike information criterion (AIC) is used to measure how
relatively well a polynomial function PolyECG-C(C, k) or PolyECG-S
(C, k) fits the ECG cycle curve C with different polynomial function
order k. AIC evaluates a given fitting model from the perspectives
of both the fitting goodness and complexity based on the informa-
tion entropy [16], and is better with a smaller value [17]. The AIC is
defined as AIC¼nln(RSS/n)þ2(pþ1), where p is the number of
parameters, n is the number of data points in this ECG cycle C,
RSS¼∑iðyi� ŷiÞ2, and yi and ŷi are the real and predicted values for
the ith data, respectively. Usually a more complex model tends to
fit the data better, i.e. the first term nln(RSS/n) decreases. But a
larger p due to the complex model will increase the second term 2
(pþ1), and a more complex model may over-fit the dataset due to
Runge’s phenomenon [18]. This work calculates the AIC value for
each trained model, and determines the best choice of the
polynomial fitting function order k with the smallest AIC.

2.6. Feature selection and classification

The ECG signals of 148 myocardial infarction (MI) patients and
52 healthy subjects were processed and divided into training and
testing datasets. The first and last 5 s of a given ECG signal were
removed, and then the ECG signal was split into multiple Unified
ECG Cycles (UECs). Each UEC curve C was transformed as a data
entry of a feature vector by either PolyECG-C(C, k) or PolyECG-S(C,
k), where k is the order of the polynomial fitting function. The data
entries from the first halves of the ECG signals constituted the
training dataset TrainSet, and the other data entries were in the
testing dataset TestSet.
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