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a b s t r a c t

The aim of inverse modeling is to capture the systems' dynamics through a set of parameterized
Ordinary Differential Equations (ODEs). Parameters are often required to fit multiple repeated
measurements or different experimental conditions. This typically leads to a multi-objective optimiza-
tion problem that can be formulated as a non-convex optimization problem. Modeling of glucose
utilization of Lactococcus lactis bacteria is considered using in vivo Nuclear Magnetic Resonance (NMR)
measurements in perturbation experiments. We propose an ODE model based on a modified time-
varying exponential decay that is flexible enough to model several different experimental conditions.
The starting point is an over-parameterized non-linear model that will be further simplified through an
optimization procedure with regularization penalties. For the parameter estimation, a stochastic global
optimization method, particle swarm optimization (PSO) is used. A regularization is introduced to the
identification, imposing that parameters should be the same across several experiments in order to
identify a general model. On the remaining parameter that varies across the experiments a function is fit
in order to be able to predict new experiments for any initial condition. The method is cross-validated by
fitting the model to two experiments and validating the third one. Finally, the proposed model is
integrated with existing models of glycolysis in order to reconstruct the remaining metabolites. The
method was found useful as a general procedure to reduce the number of parameters of unidentifiable
and over-parameterized models, thus supporting feature selection methods for parametric models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the area of biochemical engineering, emerging analytical
techniques such as Nuclear Magnetic Resonance (NMR) deliver
increasing amount of experimental biological data containing
important information about the system of interest. A great
technological advancement is in vivo NMR [1], which makes
possible to monitor metabolism in living cells by tracking the
concentration of specially marked metabolites,1 allowing to better
understand their complex physiology. Indeed, dynamic modeling
of the metabolism became one of the main research areas of
systems biology due to the expected impact in areas such as
metabolic and genetic engineering.

A typical but yet unsolved problem is the modeling of glucose
utilization in bacteria, a highly regulated process, in which the

external sugar is transported through the membrane into the cell
[2]. Accurately modeling this first step is of high relevance since it
is usually the first reaction of the bacterial metabolism pathway
and to which all the other metabolites are highly dependent [3,4].
Most modelers are focusing on the inverse problem, namely to
identify the parameters of a set of differential equations that best
fit available experimental datasets [5]. However, the majority of
these models lack generalization capabilities, i.e., even if a perfect
fit to a single experiment is achieved, they cannot explain the
systems' behavior in different experimental conditions.

In this context, multi-objective PSO (MOPSO) was extended
with term-wise decomposition, using a generalized mass action
(GMA) model [6]. This ODE model approximates the reaction rates
with power-laws, which in this case are decoupled into an
equation system by replacing derivatives with the values of the
observed slopes. However, it is known that this type of decom-
position is highly sensitive to noise [7], which might lead to poor
estimates in real noisy settings. Another approach is to apply
MOPSO directly for global modeling [8], and combining the
multiple objectives with dynamic weighting. The present work
greatly expands this previous proposal but a more throughout
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analysis of the parameter solution space is performed, along with
an improvement on the utilization dynamic model. Moreover,
regularization is introduced in the optimization procedure, thus
leading to a contrasting perspective regarding the overall fitting
methodology.

In this paper the multiple objectives are extended with reg-
ularization, which penalize the deviances between the parameters
on different experiments. The aim is to develop and identify a
model that can accurately describe different experimental condi-
tions of bacterial glucose utilization and simulate/predict novel
experiments. This paper is organized as follows: in Section 2 we
introduce the dataset, the model and our method of identification,
in Section 3 the results of bacterial glucose utilization is described
in detail. The methods and the results are further discussed in
Section 4 and finally in Section 5, conclusions are drawn.

2. Methods

Here we first describe the dataset, then the model is intro-
duced, and finally we briefly review the particle swarm optimiza-
tion (PSO) algorithm used for the identification together with the
objective functions including the regularization approach.

2.1. The dataset

In vivo NMR measurements opened new horizons for systems
biology, allowing measurement of metabolite concentrations in
the living cell [1]. In the case of Lactococcus lactis the extracellular
glucose concentration is measured and the glucose transport has
to be modeled. Three perturbation datasets were used, where a
bolus of 20, 40 and 80 mM (13C) labeled glucose was given to
starving bacteria in anaerobe conditions. It was observed that the
multiple bolus experiments do not differ much from the single
bolus regarding the shape of the glucose decay. The data was made
publicly accessible in BGFit, a biological data management and
curve fitting system [9] (http://kdbio.inesc-id.pt/bgfit). Some mod-
els using similar datasets were proposed previously [4,10–14],
integrated in wider dynamic models for the glycolytic pathway.

2.2. Identification method

Numerous methods were proposed in the literature for fitting
ODE models to biochemical and genomic systems [5]. Because of
global optimality and its stochastic nature, here the particle swarm
optimization (PSO) [15] was chosen for parameter identification.
PSO is a population based stochastic optimization method inspired
by the collective intelligence of simple interacting individuals. The
traditional example for such systems is a bird flock seeking for
food. The birds do not know the explicit location of the food, but
their distance from it, this corresponds to the objective function.
Communication is a key issue of the method, sharing knowledge
with the other members of the flock allows them to follow the bird
closest to the food.

In practice, PSO is initialized with a set of possible solutions,
called particles Sið0Þ and associated random velocities við0Þ. In
every iteration k the speed vi(k) and location Si(k) of each particle
in the parameter space is updated as

viðkÞ ¼wviðk�1Þþc1r1ðpbesti�Siðk�1ÞÞ
þc2r2ðgbest�Siðk�1ÞÞ ð1Þ

SiðkÞ ¼ Siðk�1ÞþviðkÞ; ð2Þ
where w is the inertia describing the impact of the previous
velocity to the current one. The positive constants c1 and c2
correspond to the acceleration rate towards the local and global

optima respectively. r1 and r2 are independent, uniformly distrib-
uted random variables on the interval ½0…1� ensuring the stochas-
tic behavior of the method, pbesti is the best solution discovered
by the ith particle and gbest is the best global solution found. The
particle velocities are lower and upper bounded as vminoviovmax.
The method can be summarized in the following steps.

Algorithm 1. Particle swarm optimization (PSO) algorithm.

1. Initialize a set of particles of cardinality N
2. Evaluate the objective function for all the particles
3. Update pbesti for each particle i¼ ½1…N� and gbest
4. Compute the new velocities using Eq. (1)
5. Update the particles' position using Eq. (2)
6. Repeat from step 2 until the desired precision or the limit of

iterations is reached

2.2.1. Objective function
The objective function in Algorithm 1 can be expressed in

terms of Mean Squared Error (MSE). This method was already
successfully put into practice for inferring metabolic networks
[16]. Single experiments are fitted using an objective function
based on MSE, that corresponds to the normalized ℓ2 norm:

Ld ¼
1
nd

∑
nd

t ¼ 1
ydðtÞ� ŷdðtÞ
� �2

; ð3Þ

where yd denotes the measured time-series with length of nd, and
ŷdðtÞ is the estimated (reconstructed) measurements using the
model f ð�Þ and an estimated parameter set θ̂:

ŷðtÞ ¼ f ðθ̂ ; tÞ ð4Þ
The index d identifies the different experiments, here d¼1,2 and
3 represents the 20, 40 and 80 mM initial glucose concentrations,
respectively. Here we do not aim at identifying all the metabolites
dynamics, focusing only on glucose utilization using data from
three different experiments simultaneously. In this context, it is
known that the least absolute shrinkage and selection operator
(Lasso) regularization [17] promote sparsity [18]. The idea behind
introducing regularization is to impose sparsity in the sense that
most of the parameters should not vary across the experiments
and, therefore, can be considered global parameters. The remain-
ing parameters should be dependent on the initial condition and
will be described as a function of the initial sugar concentration.

The general form of the objective function including both the
MSE terms and the regularization is

L¼L1þL2þL3þλðjθ̂1� θ̂2j1þjθ̂2� θ̂3j1þjθ̂3� θ̂1j1Þ ð5Þ
where j � j1 denotes for the ℓ1 norm, i.e. for a vector x¼ ½x1…xn�T, it
is the sum of the absolute values of the elements jxj1 ¼∑n

i ¼ 1jxij.
The vector θ̂ j with j¼ 1;2;3 represents the parameter vector
estimated from experiment j. The regularization constant, λ, is
arbitrary positive scalar, which is a parameter of the method. In
this application λ was chosen to be 10 since this value was found
to balance optimally between the MSE and the regularization.

2.3. The model

Glucose utilization can be modeled using ODEs where the
observations y(t) correspond to the extracellular sugar concentra-
tion. One of the simplest model for this decay process involves the
use of a pure exponential function, whose ODE formulation states
that the derivative _yðtÞ is proportional to y(t) through a constant k:

_yðtÞ ¼ �kyðtÞ ð6Þ
Other possibilities involve the use of logistic functions under a
statistical non-linear mixed effects models framework [19]. In

A. Hartmann et al. / Computers in Biology and Medicine 63 (2015) 301–309302

http://kdbio.inesc-id.pt/bgfit


Download English Version:

https://daneshyari.com/en/article/505212

Download Persian Version:

https://daneshyari.com/article/505212

Daneshyari.com

https://daneshyari.com/en/article/505212
https://daneshyari.com/article/505212
https://daneshyari.com

