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h i g h l i g h t s

• Not all evolutionary models exhibit the property of monotonicity.
• Violations of monotonicity arise when agents form beliefs by sampling.
• This is a consequence of the Central Limit Theorem.
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a b s t r a c t

This paper considers a class of evolutionary game-theoretic models, namely those in which agents form
beliefs about the behavior of others on the basis of random samples from the population. It shows that
the dynamics of thesemodels violate the property of monotonicity, whichmany authors have argued any
well-specified evolutionary model should possess.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper shows that an important class of game-theoretic
models of evolution – those in which agents form beliefs about the
behavior of others on the basis of samples taken from the popula-
tion – violate a property – monotonicity – that many authors have
argued any well-specified evolutionary model should possess.

In evolutionarymodels, each individual in a population exhibits
one kind of behavior out of a set of possible behaviors. These
individuals interact in a sequence of discrete periods or in
continuous time, and some process or law of motion determining
how the proportion of individuals exhibiting each kind of behavior
changes over time is specified. A seminal contribution to this
literature was Maynard Smith’s (1982)1 model of the evolution of

E-mail address: rball@haverford.edu.
1 See also Maynard Smith and Price (1973).

behavior in (non-human) animal species. In thismodel, individuals
are randomly matched into pairs every period, and a fitness
function determines the number of offspring each individual
produces, given its behavior and the behavior of the individual
with whom it is matched. Offspring exhibit the same behavior as
their parents. In applications of this model to human behavior,
payoffs represent some measure of utility or profits, rather than
reproductive success, and agents choose their actions with some
degree of rationality, rather than being genetically programmed to
adopt the same behavior as their parents.2

Many evolutionary models satisfy a property known as mono-
tonicity. A variety of definitions of this notion have been intro-
duced.3 For 2 × 2 games, which are the focus of this paper, all

2 For book length surveys of this literature, see Fudenberg and Levine (1998),
Samuelson (1997), Vega-Redondo (1996) and Weibull (1995). For surveys articles,
see Mailath (1998a,b, 1992) and Van Damme (1994).
3 Weibull (1995) distinguishes among payoff monotonicity (p. 144), payoff

positivity (p. 149) and weak payoff positivity (p. 151). Vega-Redondo (1996)
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of these notions imply that if, given the distribution of behaviors
adopted by the population, a particular behavior yields a payoff
that is higher than (respectively: lower than, equal to) the aver-
age for the population, then the proportion of the population ex-
hibiting that behaviorwill increase (respectively: decrease, remain
constant) over time. The property of monotonicity has strong intu-
itive appeal, and is satisfied in many evolutionary models, includ-
ing Maynard Smith (1982). Many authors have in fact argued that
monotonicity must be satisfied in any well-specified evolutionary
model.

This paper explores violations of monotonicity in an important
class of evolutionary models, namely those in which agents form
beliefs about the behavior of others on the basis of samples of the
past play of other individuals. We consider two models belonging
to this class.

The first, whichwe refer to as simple sample-based beliefs (SSBB),
provides a framework in which the nature of the violation of
monotonicity we are studying is illustrated transparently. In that
model, all members of a large population are randomly matched
into pairs every period to play a coordination game; players base
their beliefs about the behavior of their opponents on samples of
the actions taken by members of the population who played the
game in the immediately preceding period.4

Second, we consider a simple version of Young’s (1993) model
of adaptive play.5 In that model, exactly two players from a large
population are selected each period to play a coordination game;
players’ beliefs about opponents’ behavior depend not only on the
actions chosen by the pair that played the game in the immediately
preceding period, but on samples drawn from all the pairs that
played the game within some fixed number periods in the
past.

In Section 2,we give a definition ofmonotonicity, and then state
and prove a general theorem, showing that, in the SSBB model,
this definition of monotonicity must be violated when the samples
of previous period play observed by current period players are
large. Section 3 explores the extent to which similar violations of
monotonicity occur in adaptive play. We first demonstrate that, if
we apply the definition given in Section 2, the non-monotonicity
theorem for the SSBB does not carry over to adaptive play; in fact,
we show that it is impossible to make general statements about
whether or not adaptive play satisfies monotonicity as defined in
Section 2. We then formulate a second definition of monotonicity
– one that is equivalent to the definition given in Section 2 when
applied to the SSBB, but not when applied to adaptive play – and
show that by this definition, the violation of monotonicity that
we demonstrated in the SSBB also necessarily arises in adaptive
play.

2. Simple sample-based beliefs (SSBB)

2.1. The model

A large (even) number of players is randomlymatched into pairs
in each of an infinite sequence of discrete periods. In each period,
each pair of players plays a symmetric game with strategy space
{A, B} and payoffs shown in Fig. 1. We assume that a > c and
b < d, so that we have a coordination game.

distinguishes between growth monotonicity (p. 88) and sign-preserving dynamics
(p. 88). Fudenberg and Levine (1998) distinguish between payoff monotonicity (p.
74) and aggregate monotonicity (p. 76). For 2 × 2 games, all of these definitions are
equivalent to the definition given in Section 2.2 below.
4 Ball (2016) studies a model of the joint evolution of social norms and economic

prosperity in which beliefs are formed in this way; Durieu and Salal (2003) develop
such a model with a spatial dimension, in which each player samples the previous
period play of neighbors located within a certain distance.
5 See also Young (1996, 1998). Hurkens (1995) also studies a model in this class.

Fudenberg and Levine (1998, pp. 114–117) give an overview of thesemodels, which
they call games with ‘‘partial sampling’’.

Fig. 1. The payoff matrix.

Let pt represent the proportion of players choosing A in any
period t . Since any player has probability pt of being matched with
an A-chooser and probability 1 − pt of being matched with a B-
chooser,6 the expected payoffs from choosing A and B, respectively,
are

EU (A|pt) = pta + (1 − pt) b
EU (B|pt) = ptc + (1 − pt) d.

(1)

In each period, each player chooses an action that maximizes
her current expected payoff.7 Let p∗

≡
d−b

(a−c)+(d−b) represent the
value of pt that equates the expected payoffs from playing A and
B. Then if a player knew the true value of pt , she would choose A if
pt ≥ p∗ and she would choose B otherwise.8

But players are not able to observe the true proportion of
A-choosers. Rather, they form beliefs about pt on the basis of
observations of other players’ past behavior. In every period t ,
each player i observes a random sample9 of s individuals from
the population, and records the action of each individual in the
sample in the previous period, t − 1. These samples are drawn
independently across individuals. Let p̂it represent the proportion
of A-choosers in player i’s sample in period t .

People then form beliefs adaptively: when player i chooses her
action in period t , she assumes that the proportion of A-choosers
that periodwill be equal to p̂it .10 Hence, in period t , player i chooses
A if the realization of p̂it was at least p∗ and chooses B otherwise.
Given some true proportion pt of A-choosers in period t − 1,11
the probability that player i chooses A in period t can therefore be
written as Prit (A|pt) = Pr


p̂it ≥ p∗

|pt

. Moreover, since the p̂it ’s

of all the players are independently and identically distributed,12
we can drop the player subscript i and write the probability that
any player chooses A in period t as Prt (A|pt) = Pr


p̂t ≥ p∗

|pt

,

where p̂t is the proportion of A-choosers in a random sample of
size s from a population inwhich the true proportion of A-choosers
is p̂t . Finally, it will be convenient to write this probability in the
equivalent form of Prt (A|pt) = Pr (Ωt ≥ sp∗

|pt), where Ωt ≡ sp̂t

6 We assume that the population is large enough that each player can ignore the
effect of her own action on the population distribution.
7 As in Young (1993) and much of the related literature, players do not consider

how their current actions might influence the beliefs and actions of others in the
future.
8 We are making the arbitrary assumption that if a player is indifferent between

A and B she chooses A. All of the following analysis would go through if players
indifferent between A and B were assumed to choose B or to randomize between A
and Bwith any weights.
9 We assume that these samples are drawn with replacement, so the draws

within any sample are independent, and the number of A-choosers in any
individual’s sample follows a binomial distribution. Of course, if we assumed that
sampling was done without replacement [as in Young, 1993], all of the analysis
would go through provided the population was large relative to the sample size.
10 This assumption of adaptive expectations is central to much of the literature on
evolutionary game theory. See Young (1996, pp. 107–112) and Kandori et al. (1993,
pp. 30–32), for discussion.
11 We use the subscript t (rather than t − 1) for the proportion of players who
chose action A in period t −1 to emphasize that this is the proportion of A-choosers
in the population from which players draw their samples in period t .
12 Because the players observe independent randomsamples of identical size from
a common population.
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