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h i g h l i g h t s

• Conditional density of Y given X with multiple Y ’s for each observed X .
• Kernel conditional density estimator that smooths f (y|x) across x.
• Large sample properties depend on the sample size of X and that of Y at each X .
• A practical cross validation bandwidth selector.
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a b s t r a c t

Givenmultiple Y observations for each observedX , we propose a conditional kernel density estimator that
exploits smoothing of f (y|x) across x. We obtain large sample properties of the proposed estimator and
present a practical cross validation bandwidth selector. An application to adult BMI densities conditional
on age is provided.
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1. Introduction

Consider an Rd
× R-valued random vector (X, Y ). This article

concerns the estimation of the conditional density of Y given X .
Throughout the text, we shall refer to Y as the dependent/response
variable and to X as the covariate. Denote by g(x, y) the joint
density of (X, Y ) and by h(x) the marginal density of X , both of
which are assumed to exist. The conditional density of Y with
X = x is given by f (y|x) = g(x, y)/h(x).

Given an I.I.D. sample {(X1, Y1), . . . , (Xn, Yn)}, one can estimate
g and h nonparametrically using the kernel density estimator.
Plugging them into the formula above yields the classical condi-
tional density estimator by Rosenblatt (1969):

f̃ (y|x) =

∑n
i=1 G(∥x − Xi∥/a)K ((y − Yi)/b)

b
∑n

i=1 G(∥x − Xi∥/a)
, (1.1)

where K and G are univariate kernel functions, a and b are their
respective bandwidths, and ∥·∥ is some suitable norm. The ker-
nel function is usually taken to be a density with support R or
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some finite interval. The bandwidths a and b control the degree
of smoothing along X and Y respectively. Detailed treatments of
estimator (1.1) and its generalizations can be found in Hyndman et
al. (1996), Bashtannyk and Hyndman (2001) and Hall et al. (2004).
Alternatively conditional density estimation can be conducted in a
regression setting; see e.g., Fan et al. (1996), Hyndman and Yao
(2002), Fan and Yim (2004), De Gooijer and Zerom (2003) and
Efromovich (2007).

In practice for each observed Xi, i = 1, . . . , n, we may observe
multiple occurrences of Y , say, Yi =

{
Yi,1, Yi,2, . . . , Yi,Ni

}
,Ni > 1,

yielding an expanded sample{
(Xi, Yi,k) : i = 1, . . . , n; k = 1, . . . ,Ni

}
. (1.2)

For simplicity, we assume that Yi,k’s are I.I.D. as Yi given Xi and Yi’s
are independent across i. The goal of this study is to investigate the
nonparametric estimation of the conditional density f (y|x) given
a sample like (1.2). First note that given Yi, we can estimate the
density of Y |Xi by

f̃ (y|Xi) = (Nib)−1
Ni∑
k=1

K ((y − Yi,k)/b). (1.3)
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Next we estimate the general conditional density f (y|x) as a
weighted average of f̃ (y|Xi) with kernel smoothed weights across
Xi’s. We define this estimator as

f̂ (y|x) =

∑n
i=1 NiG(∥x − Xi∥/a)f̃ (y|Xi)∑n

i=1 NiG(∥x − Xi∥/a)

=

∑n
i=1 G(∥x − Xi∥/a)

∑Ni
k=1 K ((y − Yi,k)/b)

b
∑n

i=1 NiG(∥x − Xi∥/a)
,

(1.4)

where K and G are kernel functions with their respective band-
widths a and b. Although similar in form to Rosenblatt (1969)’s
estimator (1.1), the present estimator (1.4) is motived by local
smoothing of conditional densities, which are estimated based
on multiple occurrences of Yi associated with each Xi. This sam-
pling scheme deviates from the classical I.I.D. setting considered
in Rosenblatt (1969), and warrants a close examination of the
corresponding estimator (1.4). In this article we establish the large
sample properties of (1.4), which are shown to depend on the
interplay of sample size n and Ni, the number of Yi associated
with each Xi. We then present a practical method of bandwidth
selection.We illustrate the proposed estimatorwith an application
to the distribution of Body Mass Index, for adult male and female
separately, conditional on age.

2. Main results

For simplicity and ease of presentation, we focus on the case
where X is univariate and the size of Yi is identical such that Ni =

N, i = 1, . . . , n. Estimator (1.4) is then simplified to

f̂ (y|x) =

∑n
i=1 G((x − Xi)/a)

∑N
k=1 K ((y − Yi,k)/b)

Nb
∑n

i=1 G((x − Xi)/a)
.

We first derive the asymptotic bias and variance of f̂ (y|x). Some
assumptions are in order. Most importantly, we suppose that n and
N both go to infinity and the bandwidths a, b → 0, naNb → ∞ as
n,N → ∞. We also assume that the joint density g(x, y) and the
marginal density h(x) are such that their second order derivatives
are continuous and square integrable. The kernel functionsG and K
are symmetric and square integrable density functions with mean
zero and finite variance. The leading asymptotic bias and variance
of f̂ (y|x) are then given by

abias
{
f̂ (y|x)

}
=

a2σ 2
G

2

[
f(2)(y|x) + 2f(1)(y|x)

h′(x)
h(x)

]
+

b2σ 2
K

2
f (2)(y|x)

(2.1)

avar
{
f̂ (y|x)

}
=

R(G)R(K )f (y|x)
naNbh(x)

+
aT (G)

n
[f(1)(y|x)]2

h(x)
, (2.2)

where σ 2
K =

∫
z2K (z)dz, σ 2

G =
∫
z2G(z)dz, R(K ) =

∫
K 2(z)dz,

R(G) =
∫
G2(z)dz, T (G) =

∫
z2G2(z)dz, f (s)(y|x) = ∂ sf (y|x)/∂ys,

f(t)(y|x) = ∂ t f (y|x)/∂xt , h′(x) and h′′(x) are the first and second
derivative of h(x)with respect to x. The derivations of (2.1) and (2.2)
are given in an online supplementary appendix.

We note that the asymptotic bias (2.1) of our estimator f̂ (y|x)
is the same as that of Rosenblatt (1969)’s estimator (1.1). This
is intuitively understood: the presence of multiple Yi’s to each Xi
does not affect the bias of the estimate, but generally influences
its variance. The asymptotic variance (2.2) consists of two terms;
the first term approximates E {var {f̂ (y|x)|X }} while the second
approximates var {E {f̂ (y|x)|X }}, where X = {X1, . . . , Xn}. When a
single Yi is observed for each Xi, i.e. N = 1, our estimator f̂ (y|x)
reduces to Rosenblatt (1969)’s estimator (1.1) and clearly the
first term in (2.2) dominates. In fact, this first term is exactly the
asymptotic variance of Rosenblatt (1969)’s estimator. However in

the presence of multiple Yi’s, either term in (2.2) may dominate,
depending on how fast n and N go to infinity.

Nextwe examine the global properties of our estimator in terms
of the mean integrated squared error (MISE)

E
∫
x

∫
y

[
f̂ (y|x) − f (y|x)

]2
dyw(x)dx, (2.3)

where the integration is taken with respect to both x and y, and
w(x) is an appropriate weight function. A common choice of the
weight function in the kernel smoothing literature is h(x), the
marginal density of the covariate X; see e.g. Wand and Jones
(1995). When the weight function is set to be h(x), we usually
assume that X is defined on a bounded support to ensure integra-
bility.We note that Bott and Kohler (2015) studied the consistency
and convergence of a similar estimator in terms of the L1-norm.

It is well known that the MISE can be written as the sum of
integrated squared bias and integrated variance. Equippedwith the
asymptotic bias and variance above, we can show the asymptotic
MISE of f̂ (y|x) takes the form

c1a4 + c2a2b2 + c3b4 + c4
1

naNb
+ c5

a
n
, (2.4)

where the constants c1, c2, c3, c4 and c5 depend on the kernels
G, K , the conditional density f (y|x) and marginal density h(x). To
ease our presentation, the explicit expressions of these constants
are omitted; they are available from the authors upon request. We
then seek to minimize (2.4) with respect to the bandwidths a and
b, yielding the following first order conditions

4c1a5b + 2c2a3b3 −
c4
nN

+
c5a2b
n

= 0 (2.5)

4c3ab5 + 2c2a3b3 −
c4
nN

= 0. (2.6)

It follows that the optimal bandwidths a and b satisfy the following
relationship

b =

[
c1a4

c3
+

c5a
4c3n

]1/4

. (2.7)

Next we show that the optimal asymptotic MISE depends on
the relative magnitude of c1a4/c3 and c5a/(4c3n). There exist three
possibilities.

(i) Suppose that n/N → ∞ and na3 → ∞. In this case, a4
dominates a/n. Dropping the dominated term from (2.7), we
have b ≈ (c1/c3)1/4a. Plugging this into (2.5) and (2.6) yields[
4(c51/c3)

1/4
+ 2c2(c1/c3)3/4

]
a6 −

c4
nN

= 0,

which gives the optimal bandwidth

a∗
= c1/64

[
4(c51/c3)

1/4
+ 2c2(c1/c3)3/4

]−1/6
(nN)−1/6

and subsequently b∗
= (c1/c3)1/4a∗. It is easy to verify that

the derived a∗ is compatible with the conditions n/N → ∞

and na3 → ∞. Therefore when n grows faster than N , the
optimal asymptotic MISE is of order O

(
[nN]

−2/3
)
.

(ii) Suppose that n/N → m1 and na3 → m2 where 0 <
m1,m2 < ∞. We then have a∗

∼ n−1/3 and b∗
∼ n−1/3

according to (2.7). Let a∗
= κ1n−1/3 and b∗

= κ2n−1/3.
Plugging them into (2.5) and (2.6) yields

κ2 =

[
c1
c3

κ4
1 +

c5
4c3

κ1

]1/4

,

4c3κ1

[
c1
c3

κ4
1 +

c5
4c3

κ1

]5/4

+ 2c2κ3
1

[
c1
c3

κ4
1 +

c5
4c3

κ1

]3/4

=
c4n
N

.



Download English Version:

https://daneshyari.com/en/article/5057704

Download Persian Version:

https://daneshyari.com/article/5057704

Daneshyari.com

https://daneshyari.com/en/article/5057704
https://daneshyari.com/article/5057704
https://daneshyari.com

