
Economics Letters 157 (2017) 129–132

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

The time-varying GARCH-in-mean model
Gustavo Fruet Dias 1

CREATES and Aarhus University, Fuglesangs Allé 4, 8210 Aarhus V, Denmark

h i g h l i g h t s

• Estimation of the stochastic time-varying risk premium parameter within the TVGARCH-in-mean models.
• The proposed kernel-based iterative estimator attains good finite sample performance.
• The risk premium parameter is found to be time-varying and highly persistent.
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a b s t r a c t

I propose an estimation strategy for the stochastic time-varying risk premium parameter in the context
of a time-varying GARCH-in-mean (TVGARCH-in-mean) model. A Monte Carlo study shows that the
proposed algorithm has good finite sample properties. Using monthly excess returns on the CRSP index, I
document that the risk premium parameter is indeed time-varying and shows high degree of persistence.
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1. Introduction

Asset pricing theories suggest that riskier assets should demand
higher expected returns. Using Merton’s (1973) theoretical frame-
work, the conditional expectation of the market excess returns
reads

E
(
rmt+1 | Ft

)
− r ft = λtVar

(
rmt+1 | Ft

)
, (1)

where rmt+1 and r ft are the returns on the market portfolio and risk-
free asset, Ft is the market-wide information available at time t ,
and λt is the coefficient of relative risk aversion defined as the
elasticity of marginal value with respect to wealth. Most studies
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assume the risk-return trade-off is constant over time and linear in
the variance, which is usually associated with the reasons behind
mixed empirical evidences when estimating the risk-return trade-
off (Linton and Perron (2003), Brandt and Wang, Christensen et
al. (2012), among others). To address this issue, I adopt the time-
varying GARCH-in-mean (TVGARCH-in-mean) model in the spirit
of Anyfantaki and Demos (2016) which allows λt to be a time-
varying stochastic process and put forward a feasible estimation
strategy for λt (see references in Anyfantaki and Demos (2016)
for variants of the TVGARCH-in-mean models). Specifically, I com-
bine Giraitis et al.’s (2013) time-varying kernel least squares es-
timator with Linton and Perron’s (2003) semiparametric iterative
approach to estimate the time-varying risk premium coefficient.
A Monte Carlo study shows that the proposed algorithm has good
finite sample properties. Using the excess returns of the Center for
Research on Security Prices (CRSP) index, I document that the risk
premium parameter is indeed time-varying, alternating positive
(statistically significant) and nonsignificant values over time.
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2. The time-varying GARCH-in-mean

The generic TVGARCH-in-mean(p, q) is defined as:

rt = λtσt + ϵt , (2)

ϵt = σtηt , (3)

σ 2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
i=1

βiσ
2
t−i, (4)

ϵ2t = ψ0 + ut +

∞∑
i=1

ψiut−i, (5)

where ηt is an independent and identically distributed (iid) zero
mean process with unit variance; σt is a latent conditional stan-
dard deviation; (5) is theMA(∞) representation of the conditional
variance equation;ut = ϵ2t −σ

2
t is amartingale difference sequence

process;φ =
(
ω, α1, . . . , αp, β1, . . . , βq

)′ collects the free parame-
ters in (4); andψi := ϱi (φ) i = 1, 2, . . . are deterministic functions
of the elements in φ. Similarly as in Giraitis et al. (2013), the time-
varying risk premium parameters are assumed to evolve smoothly
over time, so that it satisfies a local stability condition in the form
of sups:∥s−t∥≤h∥λt + λs∥2 = Op (h/t).

Estimating the free parameters in (2) and (4) by maximum-
likelihood is not a feasible alternative, as the class of TVGARCH-
in-mean(p, q) models involves two unobserved processes: λt and
ϵt . Anyfantaki andDemos (2016) address this issue in the context of
the time-varying EGARCH(1,1)-in-mean model. Specifically, their
work differs from mine in two ways. First, they parameterize the
conditional variance as an EGARCH(1,1) model and, most impor-
tantly, λt as a stationary AR(1) process. By contrast, λt in (2)
is assumed to satisfy sups:∥s−t∥≤h∥λt + λs∥2 = Op (h/t), which
encompasses the case of the driftless randomwalk process consid-
ered in Chou et al. (1992). Second, while I propose a kernel-based
nonparametricmethod to estimate the time-varying risk premium
parameter, Anyfantaki and Demos’s (2016) estimation strategy is
based on Bayesian methods (Markov chain Monte Carlo (MCMC)
likelihood based estimation procedure).

I combine Linton and Perron’s (2003) iterative semiparametric
estimator with Giraitis et al.’s (2013) kernel-based least squares
framework to estimate the free parameters θ =

(
λ, φ

)′, where
λ = (λ1, . . . , λT )

′. This method consists of recursively updating
estimates of σt and ut on each iteration, and then computing
estimates of λ and φ. To this end, consider moment conditions
based on (2) and (5),

E [σt (rt − λtσt)] = 0, for each t = 1, 2, . . . , T , (6)

E [ztut ] = 0, with zt :=

∂

(
ψ0 +

q̄∑
i=1
ψiut−i

)
∂φ

, (7)

where (7) is truncated at some lag-order q̄ with q̄ > p + q + 1.
Notably, (7) holds because ut is a martingale difference sequence
and zt is a function of lagged values of ut . It follows that estimating
θ by the standard generalized method of moments (GMM) using
the moments defined in (6) and (7) is not operational, as zt and
σt are latent variables. Using Linton and Perron’s (2003) approach,
rewrite (6) and (7) using estimates of σt and ut obtained at some j
iteration,

E
[
σj,t

(
rt − λj+1,tσj,t

)]
= 0, for each t = 1, 2, . . . , T , (8)

E
[
zj,tuj+1,t

]
= 0, (9)

where σj,t and zj,t denote the filtered estimates of σt and zt based
on θ̂j, and uj+1,t = ϵ2j,t − ψj+1,0 −

∑q̄
i=1 ψj+1,iuj,t−i with ϵ2j,t =(

rt − λj+1,tσj,t
)2. While the finite sample counterpart of (9) is

given by the usual sample mean, computing the sample counter-
part of (8) is less obvious. Thework of Giraitis et al. (2013) suggests
the use of local kernels to construct operational sample counter-
parts of (8). In turn, a feasiblemoment condition based on (8) reads

K−1
t

T∑
τ=1

kt,τσj,τ
(
rτ − λ̂j+1,tσj,τ

)
= 0,

for each t = 1, 2, . . . , T , (10)

where kt,τ = K ((t − τ) /H) denotes a kernel function such that
K (x) ≥ 0 for any x ∈ R is a continuous bounded function with a
bounded first derivative and

∫
K (x)dx = 1; H is the bandwidth

parameter satisfying H = o (T/ln (T )) as H → ∞; and Kt =∑T
τ=1kt,τ . Notably, writing the moment conditions as in (10) is

consistentwith previous studies in the time-varying parameter lit-
eraturewhichmaximizes kernelweighted log-likelihood functions
(see Robinson (1989), Giraitis et al. (2016), among others).

I use the fact that (10) is exactly identified for each t , and
hence estimates of λt can be obtained independently of φ. In turn,
estimates of θ are computed iteratively by a two-step procedure.
The first step consists of solving (10) for each t , while the second
step mimics the work of Linton and Perron (2003) and consists of
estimating φ using the sample counterpart of (9). In practice, the
kernel-based iterative estimator is as follows:

Step 1: Choose starting values λ̂0 and φ̂0, such that φ̂0 satisfies the
second-order stationarity conditions of the GARCH(1,1) model.
Using θ̂0,t =

(̂
λ0, φ̂0

)′, compute recursively
{
σ 2
0,t

}T
t=1

, and{
u0,t

}T
t=1 from (2)–(5).

Step 2: Given
{
σ 2
0,t

}T
t=1

, calculate

λ̂1,t =

(
T∑
τ=1

kt,τσ 2
0,τ

)−1 T∑
τ=1

kt,τσ0,τ rτ ,

for each t = 1, 2, . . . , T . (11)

Step 3: Solving the sample counterpart of (9) is equivalent to
estimate φ̂1 by nonlinear least squares. Calculate

φ̂1 = argmin
φ̂1

×

T∑
t=1

{(
rt − λ̂1,tσ0,t

)2
− ψ̂1,0 −

q̄∑
i=0

ψ̂1,iu0,t−1−i

}2

. (12)

Step 4: Update recursively
{
σ 2
1,t

}T
t=1

and
{
u1,t

}T
t=1 based on θ̂1.

Repeat steps 2–4 j times until θ̂j converges. Convergence occurs
when

̂λj − λ̂j−1


2

≤ ε and
φ̂j − φ̂j−1


2 ≤ ε, with ε set to 10−5.

Parameters on the jth iteration are given by:

λ̂j,t =

[
T∑
τ=1

kt,τσ 2
j−1,τ

]−1 T∑
τ=1

kt,τσj−1,τ rτ ,

for each t = 1, 2, . . . , T , (13)

φ̂j = argmin
φ̂j

×

T∑
t=1

[[
rt − λ̂j,tσj−1,t

]2
− ψ̂j,0 −

q̄∑
i=0

ψ̂j,iuj−1,t−1−i

]2

. (14)

Finally, three inputs are still necessary to implement the above
algorithm: the kernel function, the bandwidth parameter H , and
the truncation lag q̄. As in Giraitis et al. (2013), three kernel
functions are used: the Epanechnikov, Gaussian, and flat kernels.
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