Economics Letters 157 (2017) 129-132

Contents lists available at ScienceDirect

Economics Letters

journal homepage: www.elsevier.com/locate/ecolet

The time-varying GARCH-in-mean model \

CrossMark

@

Gustavo Fruet Dias
CREATES and Aarhus University, Fuglesangs Allé 4, 8210 Aarhus V, Denmark

HIGHLIGHTS

o Estimation of the stochastic time-varying risk premium parameter within the TVGARCH-in-mean models.
o The proposed kernel-based iterative estimator attains good finite sample performance.
e The risk premium parameter is found to be time-varying and highly persistent.
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1. Introduction assume the risk-return trade-off is constant over time and linear in
the variance, which is usually associated with the reasons behind

Asset pricing theories suggest that riskier assets should demand mixec} empirical evidences when estimating the risk-reFurn trade-
higher expected returns. Using Merton’s (1973) theoretical frame-  ©ff (Linton and Perron (2003), Brandt and Wang, Christensen et
work, the conditional expectation of the market excess returns  al. (2012), among others). To address this issue, I adopt the time-

reads varying GARCH-in-mean (TVGARCH-in-mean) model in the spirit
n n of Anyfantaki and Demos (2016) which allows A; to be a time-
E (rt+1 | ]:r) - rrf = A Var ("t+1 | ]'—t) ’ (1) varying stochastic process and put forward a feasible estimation

strategy for A; (see references in Anyfantaki and Demos (2016)
for variants of the TVGARCH-in-mean models). Specifically, I com-
bine Giraitis et al.’s (2013) time-varying kernel least squares es-
timator with Linton and Perron’s (2003) semiparametric iterative
approach to estimate the time-varying risk premium coefficient.
A Monte Carlo study shows that the proposed algorithm has good
E-mail address: gdias@econ.au.dk. finite sample properties. Using the excess returns of the Center for
1 | thank George Kapetanios, Cristina Scherrer and an anonymous referee for Research on Security Prices (CRSP) index, I document that the risk
constructive suggestions. I acknowledge support from CREATES — Center for . . . . . ..
premium parameter is indeed time-varying, alternating positive

Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish o e o >
National Research Foundation. (statistically significant) and nonsignificant values over time.

where r}} ; and rtf are the returns on the market portfolio and risk-
free asset, F; is the market-wide information available at time t,
and A; is the coefficient of relative risk aversion defined as the
elasticity of marginal value with respect to wealth. Most studies
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2. The time-varying GARCH-in-mean

The generic TVGARCH-in-mean(p, q) is defined as:

e = Aot + €, )
Gt = O'tnh (3)
p q
ol=w+ Za,—ef_i + Z Biol (4)
i—1 i—1
o0
= Yo +ur + ZW:’UH, (5)

i=1
where 7, is an independent and identically distributed (iid) zero
mean process with unit variance; o; is a latent conditional stan-
dard deviation; (5) is the MA(co) representation of the conditional
variance equation; u; = €2—o? is amartingale difference sequence
process; ¢ = (w, A, ..., 0p, Br, .., ﬂq)/collects the free parame-
tersin(4); and ¥; := 0; (¢)i = 1, 2, ... are deterministic functions
of the elements in ¢. Similarly as in Giraitis et al. (2013), the time-
varying risk premium parameters are assumed to evolve smoothly
over time, so that it satisfies a local stability condition in the form
of supgs_¢j<nllAe + Aslla = 0, (h/1).

Estimating the free parameters in (2) and (4) by maximum-
likelihood is not a feasible alternative, as the class of TVGARCH-
in-mean(p, q) models involves two unobserved processes: A; and
€:.Anyfantaki and Demos (2016) address this issue in the context of
the time-varying EGARCH(1,1)-in-mean model. Specifically, their
work differs from mine in two ways. First, they parameterize the
conditional variance as an EGARCH(1,1) model and, most impor-
tantly, A; as a stationary AR(1) process. By contrast, A; in (2)
is assumed to satisfy supg.s_¢<nllAe + Aslla = Op (h/t), which
encompasses the case of the driftless random walk process consid-
ered in Chou et al. (1992). Second, while I propose a kernel-based
nonparametric method to estimate the time-varying risk premium
parameter, Anyfantaki and Demos’s (2016) estimation strategy is
based on Bayesian methods (Markov chain Monte Carlo (MCMC)
likelihood based estimation procedure).

I combine Linton and Perron’s (2003) iterative semiparametric
estimator with Giraitis et al.’s (2013) kernel-based least squares
framework to estimate the free parameters 6 = (A, qﬁ)/, where
A = (A1,...,Ar)". This method consists of recursively updating
estimates of o; and u; on each iteration, and then computing
estimates of A and ¢. To this end, consider moment conditions
based on (2) and (5),

Elo¢ (r — Aeor)] =0, foreach t=1,2,...,T, (6)
q
0 <1ﬁ0 + Zlﬁfu“)
i=1
E =0, ith z; == s 7
[zeu;] with z; P (7)

where (7) is truncated at some lag-order g withq > p + q + 1.
Notably, (7) holds because u, is a martingale difference sequence
and z; is a function of lagged values of u;. It follows that estimating
0 by the standard generalized method of moments (GMM) using
the moments defined in (6) and (7) is not operational, as z; and
oy are latent variables. Using Linton and Perron’s (2003) approach,
rewrite (6) and (7) using estimates of o; and u, obtained at some j
iteration,

E [O’j’[ (T[ - j+],tCTj,t)] = 0, fOl‘ eaCh t= 1, 2, ceey T, (8)

E [Zj tUj+1, [] =0, (9)
where o;; and z;,; denote the filtered estimates of o; and z based

on 91 and ujyqr = 6 = VYjt10 Z, 1 Vir,illj—; with €7, =
2 .
(re = Ajsre0y.0) " Whlle the finite sample counterpart of( ) is

given by the usual sample mean, computing the sample counter-
part of (8) is less obvious. The work of Giraitis et al. (2013) suggests
the use of local kernels to construct operational sample counter-
parts of (8). In turn, a feasible moment condition based on (8) reads

K Zk”cr” (ro —

foreach t=1,2,...,T, (10)

;+1 ¢0j, r) =0,

where k; , = K ((t — t) /H) denotes a kernel function such that
K(x) > 0 for any x € R is a continuous bounded function with a
bounded first derivative and j K(x)dx = 1; H is the bandwidth
parameter satisfying H = o(T/In(T)) asH — oo; and K; =
ZZ:JqJ. Notably, writing the moment conditions as in (10) is
consistent with previous studies in the time-varying parameter lit-
erature which maximizes kernel weighted log-likelihood functions
(see Robinson (1989), Giraitis et al. (2016), among others).

I use the fact that (10) is exactly identified for each t, and
hence estimates of A, can be obtained independently of ¢. In turn,
estimates of 6 are computed iteratively by a two-step procedure.
The first step consists of solving (10) for each t, while the second
step mimics the work of Linton and Perron (2003) and consists of
estimating ¢ using the sample counterpart of (9). In practice, the
kernel-based iterative estimator is as follows:

Step 1: Choose starting v.sllueszO and?ﬁo, such that?ﬁo satisfies the
second-order stationarity conditions of the GARCH(1,1) model.

Using Bo (% d0) . compute recursively {%f}[T:p and
T
{uo.c},_, from (2)-(5).
Step 2: Given {002,[}::1, calculate
T -1 7
)\1,t = (Z I<[¢T0é1> Z I<t,TUO,TrT7
=1 =1
foreach t =1,2,...,T. 11

Step 3: Solving the sample counterpart of (9) is equivalent to
estimate ¢; by nonlinear least squares. Calculate

¢1 = argmin
[
2

q
- %,o - Z@l,iuo,[li} . (12)

i=0

T

X Z {(rt —xl,tCTo,t)z
=1

Step 4: Update recursively {o} t}T and {uy, [} based on 6;.

Repeat stgps 2-4 j times until 9 converges. Convergence occurs
when ||%; — ;| < eand |¢; — ¢] 1], < & with & set to 107>

Parameters on the jthiteration are given by:

T -1 7
Y 2
)\j,t = E k[,rajflyr § kt,zo'j—l,rrr»
=1 =1

foreach t=1,2,...,T, (13)
:ﬁ\j = argmin
%

2

T q

o~ 2 -~ o~

X Z |:[rt = Mi0j1e]” — Vo — Z '/fj,iujl.tli:| . (14)
t=1 i=0

Finally, three inputs are still necessary to implement the above

algorithm: the kernel function, the bandwidth parameter H, and

the truncation lag g. As in Giraitis et al. (2013), three kernel

functions are used: the Epanechnikov, Gaussian, and flat kernels.
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