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h i g h l i g h t s

• We detail a method of solving and simulating DSGE models which is more accurate than the traditional method of linearizing about the steady state.
• Our method takes longer, but is able to sole and simulate unbalanced growth models which cannot be solved using any other current method.
• While the execution time is longer it is not prohibitively so, and the results are much more accurate, at least when measured by Euler errors.
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a b s t r a c t

This paper presents an adjustment to commonly used linear approximation methods for dynamic
stochastic general equilibrium (DSGE)models. Policy functions approximated around the steady statewill
be inaccurate away from the steady state. In some cases the model may not have a well-defined steady
state, or the nature of the steady state may be at odds with its off-steady-state dynamics. We show how
to simulate a DSGE model with no well-defined steady state by approximating about the current state.
Our method minimizes the error associated with a finite-order Taylor-series expansion of the model’s
characterizing equations. This method is easily implemented and has the advantage of mimicking highly
non-linear behavior. It also requires choosingN out of 2N possible roots fromamatrix quadratic equations
and the choice of this root not obvious away from the steady state. However, simulations show that using
the same criteria as when linearizing about the steady state yield reasonable, well-fitting results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Dynamic stochastic general equilibrium (DSGE) models are
an important class of macroeconomic modeling that have been
in use now for several decades. They are increasingly used in
policy contexts to simulate the effects of policy changes on the
macroeconomy.1

Usually these models are too complex to find closed-form solu-
tions for dynamic policy functions that map the current state of
the economy into the values for next period’s endogenous state
variables. Instead, these models must be solved and simulated us-
ing someapproximationmethod. Themostwidely used techniques

✩ This research benefited from the computing resources of the BYU Macroecono
mics and Computational Laboratory. Thanks to Chase Coleman, Mary Li, Yulong Li
and Jake Orchard for their excellent research assistance and to RichardW. Evans for
insightful comments and support.

E-mail address: kerk_phillips@byu.edu.
1 See for example Smets and Wouters (2007) and Christiano et al. (2005).

include the linearization methods in Uhlig (1999) and Christiano
(2002) who employ a method of undetermined coefficients to
solve the state-space representation outlined in Blanchard and
Kahn. (1980). Higher-order polynomial approximations developed
by Judd (1992), Guu and Judd (2001), Collard and Juillard (2001)
and Schmitt-Grohe and Uribe (2004) are increasingly widely used.
This is the approach taken with the poplar DSGE software package
Dynare, for example.2

This paper presents an easy adjustment to linear and higher-
order approximation methods. Since approximation is almost
always done about the model’s steady state, the linear policy
functions can be inaccurate if the simulation is often away from the
steady state. In some cases, this leads to only small errors. In other
cases, however, the model may not have a well-defined steady
state, or the nature of the steady state may be at odds with its
off-steady-state dynamics. Approximating about the steady state

2 See Adjemian et al. (2014) for details.
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requires the existence of a steady state. If one does not exist, the
model’s variablesmust be redefined so that they are stationary.We
refer to this method as ‘‘steady state linearization’’ (SSL).

Some models of interest to researchers cannot be easily trans-
formed in this manner, however. These include multi-sector mod-
els with unbalanced growth and models where the parameters
are time-varying. We show how to simulate an unbalanced DSGE
model by approximating about the current state, rather than the
steady state. This method is easily implemented and has the ad-
vantage of accurately mimicking non-linear behavior. The ability
to accurately solve and simulate models that have no steady state
makes it possible to examine the behavior of a richer class of
models that may be better able to mimic the real economy.

We proceed similarly to Uhlig (1999) and Christiano (2002)
who use SSL. They hypothesize linear policy functions and use the
method of undetermined coefficients to solve for the coefficients
of the policy function. We propose an alternative strategy, which
we call ‘‘current state linearization’’ (CSL),where one approximates
the policy function for each period of the simulation about the
current state of the economy. This is computationally more in-
tensive as it requires linearization each period, rather than only
once. However, thismethod has the advantage of beingmuchmore
accurate when the economy is far from the steady state and being
feasible when no steady state exists. CSL can easily replicate the
behavior of highly nonlinear policy functions. This is because the
Taylor-series approximation is highly accurate in the neighbor-
hood of the point about which a function is approximated. Since
we are always approximating about the current state, our linear
policy functionwill be very close to the true policy function for that
state.

Onemajor hurdle in polynomial approximations is choosing the
appropriate roots from a matrix quadratic equation. In the steady
state this is relatively simple since the system is generally stable
about the steady state.Mostmacroeconomicmodels yield a unique
set of roots that imply stability in that neighborhood. The same is
not true away from the steady state. However, we show that for
our simple unbalanced growthmodel, the criterion used for steady
state stabilityworkswell, generating very small Euler errors during
simulation. There is no guarantee that the roots with the smallest
modulus correspond to the policy functions associated with the
saddle path. Fortunately, with the simple illustrative model in this
paper that criterion performs well.

While we illustrate our method using linear approximations,
the concepts and method apply to higher-order polynomial ap-
proximations as well.

2. Derivation of an approximation about the current state

Consider a set of nonlinear expectational functions, in our case
from a dynamic general equilibrium model. The state variables
are grouped into two categories: exogenous state variables are
grouped into the S × 1 column vector, Zt , while endogenous ones
are placed in the K × 1 column vector, Xt . There are K equations
and they can be represented as in Eq. (2.1).

Et{Γ (Xt+2, Xt+1, Xt , Zt+1, Zt )} = 0 (2.1)

This system of equations can be approximated by taking a first-
order Taylor series expansion about an arbitrary point in the state
space. We choose the current value for the state variables, θt =

{Xt , Zt}. This transformation is given in Eq. (2.2).

Et{Tt + Ft X̃t+2 + Gt X̃t+1 + Ht X̃t + Lt Z̃t+1 + Mt Z̃t} = 0 (2.2)

In the above equation, Ft ,Gt andHt are K×K matrices, Lt andMt
areK×Smatrices, and Tt is anK×1 vector. All thesewill depend on

which point is chosen for the linearization. Tildes denote absolute
deviations from θt values. Note that if we choose to linearize about
the steady state, θ̄ = {X̄, Z̄} the value of Tt is zero.While this is true
of the steady state, it will not be true generally.

The law of motion for the exogenous state variables is assumed
to be a first-order vector autoregression of the form in Eq. (2.3).

Zt+1 = (I − N)Z̄ + NZt + Et+1 (2.3)

Since we are allowing for linearization around any value of Z ,
we proceed to transform (2.3) into (2.4).

Et{Z̃t+1} = Zt − Z̄ (2.4)

As with standard linearization techniques, our goal is to find a
linear approximation to the policy function, (2.5).

X̃t+1 = Ut + Pt X̃t + Qt Z̃t (2.5)

where Ut is an K × 1 column vector, Pt is an K × K matrix and Qt
is K × S.

The major differences between (2.5) and the standard linear
policy function are: First, the inclusion of the constant term, Ut ,
which makes it possible for the endogenous state variables to drift
away from the current state. And second, the time-varying nature
of the parameters Pt , Qt and Ut . Iterative substitution of (2.4) and
(2.5) into (2.2) yields the following three conditions which define
Pt , Qt & Ut .

FtP2
t + GtPt + Ht = 0 (2.6)

(FtQt + Lt )N + (FtPt + Gt )Qt + Mt = 0 (2.7)

Tt + [FtUt + FtPtUt ) + GtUt

+ (FtQt + Lt )(N − I)(Zt − Z̄) = 0 (2.8)

The CSL method allows us to solve for each period’s coefficients
in isolation, without having to refer to next period’s actual values.
It has the advantage of not needing to solve for a benchmark time
path via some other method. Indeed, it is not even necessary to
solve for the steady state. Instead, we generate the time path as
we solve and simulate each period. A disadvantage is that wemust
recalculate the unique values of Pt , Qt & Ut each period in each
simulation.

Choosing the roots from Eq. (2.6) is often straightforward when
linearizing about the steady state as there is usually a unique set of
roots that implies stability of the system. This need not be the case
for CSL, however. Stability of the endogenous state variables need
not hold away from the steady state. The true roots may imply a
path that would be unstable were one to use them for the entire
simulation. However, since they are used only for one period the
instability is purely temporary andpart of the convergenceprocess.
We show in our unbalanced growth example below, that choosing
he roots with the smallest modulus works very well for CSL for
our particular model. Unfortunately, this need not generally be the
case.

3. Applying this method to an unbalanced growth model

In this sectionwe consider amodel with a labor leisure decision
and technical progress. The household’s problem is shown below.
We adopt preferences as laid out in Jaimovich and Rebelo (2009).

V (kt , xt−1, zt ) = max
kt+1,ht

(ct − ψhθt xt )
1−σ

1 − σ
+ βEt [V (kt+1, xt , zt+1)]

xt = cγt x
1−γ
t−1 (3.1)

ct = wtht + (1 + rt − δ)kt − kt+1 (3.2)
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