Economics Letters 126 (2015) 167-170

Contents lists available at ScienceDirect

Economics Letters

iournal homepage: www.elsevier.com/locate/ecolet

Information disclosure to Cournot duopolists*

Kfir Eliaz^{a,b}, Françoise Forges^{c,*}

^a Tel Aviv University, Tel Aviv, Israel

^b University of Michigan, Ann Arbor, MI, USA

^c PSL, Université Paris-Dauphine, CEREMADE and LEDa, France

HIGHLIGHTS

• A planner looks for the information structure that maximizes duopolists' surplus.

ABSTRACT

• The optimal policy is to fully inform one of them and say nothing to the other.

• The result extends in the oligopoly case but depends on specific assumptions.

ARTICLE INFO

Article history: Received 10 September 2014 Received in revised form 20 November 2014 Accepted 5 December 2014 Available online 12 December 2014

JEL classification: C72 D82

Keywords: Cournot duopoly Information structure Verifiable information

1. Introduction

The outcome of agents' decisions often depends on a state of nature. The agents' possible private information on the state is a crucial parameter of their strategic interaction. Most studies in the literature assume specific, exogenously given information structures, in which, e.g., one agent is more informed than the others. This note is concerned with the endogenous determination of information structures, that is, with the design of an optimal information structure by an informed planner. In particular, we do not impose any a priori restrictions on the information structures.

Corresponding author.

E-mail addresses: kfire@post.tau.ac.il, kfir@umich.edu (K. Eliaz), francoise.forges@gmail.com (F. Forges).

We focus on a simple, yet familiar, environment: a standard Cournot duopoly with substitute goods, affine inverse demand and constant marginal costs. At the beginning of the game, the Cournot duopolists are uncertain about demand, which is only known to a benevolent planner who maximizes the sum of the duopolists' payoffs. We assume that the planner fully commits to an information transmission rule before observing the state of nature and that he cannot lie.¹ However, he can manipulate the accuracy of the transmitted information by increasing the number of states that he declares possible. More importantly, we allow the planner to send a private message to each of the duopolists, who thus end up playing a Bayesian game in which private information is endogenously generated by the planner's messages. Except for the possibly different messages from the planner, the duopolists are completely identical.

© 2014 Elsevier B.V. All rights reserved.

conomics letters

We show that in a standard symmetric Cournot duopoly with unknown demand, the optimal information

disclosure policy of an informed benevolent planner is to fully inform one of the duopolists and disclose

no information to the other one. We discuss possible extensions of the result.

 $^{^{}m in}$ This research started at Brown University in the Spring 2011. We are grateful to Marco Scarsini and Antoine Salomon for their active help in some parts of the paper. We also thank Martin Cripps, Frédéric Koessler, Régis Renault and an anonymous referee for useful comments. The second author acknowledges the support of Institut Universitaire de France.

 $^{^{1}}$ As in Milgrom (1981), the planner can only manipulate the precision of his message.

Our main finding (Proposition 1) is that, if demand is concentrated enough, it is optimal for the planner to treat the two duopolists *asymmetrically*: fully reveal the state of nature to one, while keeping the other in the dark. Thus, any requirement to transmit only public information (perhaps due to equity concerns) may come at the expense of ex-ante welfare.² We then show that Proposition 1 extends to the oligopoly case, but may fail if demand is dispersed, cost functions are quadratic, goods are not substitutes or if the planner's objective is not the producers' surplus.

Our objective in presenting these results is to encourage readers to extend our analysis and study the case without commitment.

Due to the lack of space, we limit references to a minimum. The closest paper to ours is Eliaz and Serrano (2014), which studies a similar question when the interacting agents are involved in a generalized multi-action prisoner's dilemma. They also present sufficient conditions under which the first-best involves asymmetric treatment of the two players. However, in contrast to us, in the first-best either both receivers are uninformed or both receive some information. Some other related papers are mentioned below.

2. Basic Cournot duopoly

2.1. Model

We consider a symmetric Cournot duopoly with affine inverse demand, in which the intercept is a random variable θ that takes finitely many values in a set $\Theta \subseteq \mathbb{R}_+$. Let $\theta_L \equiv \min \Theta$ and $\theta_H \equiv \max \Theta$. In stage 0, θ is realized but is not observed by the duopolists, agents 1 and 2. In stage 1, each agent *i* receives a private message $s_i(\theta)$ that satisfies $\theta \in s_i(\theta) \subseteq \Theta$. That is, every agent *i* is endowed with a partition S_i of Θ and is told which element $s_i(\theta)$ in his partition contains the true state θ . The two partitions, (S_1, S_2) , define the *information structure* of the game. In stage 2, the duopolists simultaneously and noncooperatively choose a (positive) quantity to produce. The goods are substitutes and marginal costs are constant.

If the duopolists produce quantities *x* and *y* in \mathbb{R}_+ , they get the payoffs³

$$u_1((x, y), \theta) = x [\theta - (x + y)]$$

$$u_2((x, y), \theta) = y [\theta - (x + y)].$$

We are looking for an information structure that is optimal in the sense that it maximizes the ex-ante expected sum of the duopolists' payoffs. Let

$$v((x, y), \theta) \equiv u_1((x, y), \theta) + u_2((x, y), \theta)$$

= $(x + y) [\theta - (x + y)].$ (1)

 $v((x, y), \theta)$ may be interpreted as the payoff of a benevolent planner, who privately observes the value of θ and sends a private message to every duopolist at stage 1. With this interpretation, the duopolists play a Bayesian game in which private information is generated by the planner's messages. Agent 1 chooses $x(s_1(\theta)) = x(\theta), s_1(\theta)$ -measurable and similarly, agent 2 chooses $y(s_2(\theta)) = y(\theta), s_2(\theta)$ -measurable. Since the duopolists interact noncooperatively, $x(\theta)$ and $y(\theta)$ must be best responses to each other, so that $x(\theta)$ maximizes

$$\mathbb{E}[u_1(x(\theta), y(\theta), \theta) \mid s_1(\theta)] = x(\theta) \left[\mathbb{E}[\theta - y(\theta) \mid s_1(\theta)] - x(\theta)\right]$$

which describes a parabola with roots 0 and $\mathbb{E}[\theta - y(\theta) | s_1(\theta)]$. If $\mathbb{E}[\theta - y(\theta) | s_1(\theta)] \le 0$, the max over \mathbb{R}_+ is 0. Agent 2's equilibrium condition is similar.

We will first assume that the distribution of θ cannot put much weight on relatively high values, in the sense that

$$\mathbb{E}(\theta) < 3\theta_L. \tag{A}$$

Assumption (A), which is always satisfied if $\theta_H < 3\theta_L$, is equivalent to $\theta - \frac{1}{3}\mathbb{E}(\theta) > 0$ for every θ . It says that an agent who knows the state θ and conjectures that the other agent will choose $\frac{1}{3}\mathbb{E}(\theta)$ produces a positive quantity.

2.2. Optimal information structure

An information structure $\{S_1, S_2\}$ is optimal if it maximizes

$$\mathbb{E}[v((x, y), \theta)] = \mathbb{E}[\{x(s_1(\theta)) + y(s_2(\theta))\} \\ \times \{\theta - x(s_1(\theta)) - y(s_2(\theta))\}]$$
(2)

where

$$x(s_1(\theta)) = \max\left\{0, \frac{1}{2}\mathbb{E}[\theta - y(s_2(\theta)) \mid s_1(\theta)]\right\}$$
(3)

and similarly for agent 2.

Before state θ is realized, the planner commits to a rule that decides which pair of private messages he will send at every state of nature. The planner's commitment strategy maximizes his exante expected payoff, taking into account the second-stage game between the agents.

The next result identifies the optimal information structure.

Proposition 1. In the basic Cournot duopoly, if assumption (A) holds, an optimal information structure consists of revealing the state of nature to one duopolist and transmitting no information to the other one.

Proof. Let

$$\delta(\theta) \equiv x(s_1(\theta)) + y(s_2(\theta)) - \frac{\theta}{2}.$$

Then the objective function (2) may be rewritten as

$$\mathbb{E}\left[\left(\frac{\theta}{2} + \delta(\theta)\right)\left(\frac{\theta}{2} - \delta(\theta)\right)\right] = \mathbb{E}\left[\left(\frac{\theta}{2}\right)^2 - \delta^2(\theta)\right].$$

In the rest of the proof, we simply write *x* for $x(\theta)$ and *y* for $y(\theta)$.

Step 1: We show that $\mathbb{E}[\delta(\theta)] \geq \frac{1}{6}\mathbb{E}(\theta)$. We deduce from the above expression (3) for *x* and the similar expression for *y* that $\mathbb{E}(x) \geq \frac{1}{2}[\mathbb{E}(\theta) - \mathbb{E}(y)]$ and $\mathbb{E}(y) \geq \frac{1}{2}[\mathbb{E}(\theta) - \mathbb{E}(x)]$. Hence $\mathbb{E}(x + y) \geq \frac{2}{3}\mathbb{E}(\theta)$ and $\mathbb{E}[\delta(\theta)] \geq \frac{1}{6}\mathbb{E}(\theta)$.

Step 2: By Jensen's inequality, $[\mathbb{E}(\delta(\theta))]^2 \leq \mathbb{E}(\delta^2(\theta))$. By step 1, this implies that $\mathbb{E}(\delta^2(\theta)) \geq [\frac{\mathbb{E}(\theta)}{6}]^2$. Thus, the objective function (2) satisfies

$$\mathbb{E}\left[\left(\frac{\theta}{2}\right)^2 - \delta^2(\theta)\right] \le \mathbb{E}\left(\left(\frac{\theta}{2}\right)^2\right) - \left(\frac{\mathbb{E}(\theta)}{6}\right)^2$$
$$= \frac{1}{4}\mathbb{E}(\theta^2) - \frac{1}{36}[\mathbb{E}(\theta)]^2.$$

Step 3: We show that the lower bound on $\mathbb{E}(\delta^2(\theta))$ is achieved when one agent is fully informed and the other agent is not informed at all. Suppose indeed that this happens: the informed agent chooses $\frac{1}{2}\theta - \frac{1}{6}\mathbb{E}(\theta)$, which is ≥ 0 for every θ iff $\frac{1}{3}\mathbb{E}(\theta) \leq \theta_L$ (namely, assumption (A)), while the uninformed one chooses $\frac{1}{3}\mathbb{E}(\theta) \geq 0$. It follows that the ex-ante expected sum of the

² For example, signals are public in Hagenbach et al. (2014) and Lukyanov and Su (2014); they are not in Perry et al. (2014).

³ As pointed out by Einy et al. (2010), as soon as there is uncertainty in a Cournot duopoly, possibly negative prices have an impact on existence of an equilibrium. We take the payoff functions seriously, namely, implicitly allow negative prices, but insist on positive quantities. Our interpretation is that, in the case of overproduction (i.e., $x + y > \theta$), the agents face a loss, *as if* the price was negative.

Download English Version:

https://daneshyari.com/en/article/5058782

Download Persian Version:

https://daneshyari.com/article/5058782

Daneshyari.com