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a b s t r a c t

This paper considers a multivariate extension of the test for neglected nonlinearity proposed by Tsay
(1986) that uses principal components to overcome the problem of dimensionality that is common with
tests of this type.Monte Carlo experiments reveal that themodifiedmultivariate test provides a significant
dimensional reduction without suffering from any systematic level distortion or power loss, and is more
powerful than univariate nonlinearity tests.
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1. Introduction

Recent years have witnessed a growing interest in tests for ne-
glected nonlinearity in time series models (see, e.g., Tong, 1990;
Teräsvirta et al., 2010). Such tests have become an essential first
step in model-building exercises since, due to the difficulties as-
sociated with the statistical analysis of nonlinear models, it is of-
ten desirable to establish the adequacy or otherwise of a linear
data representation before exploring more complicated nonlinear
structures.

Although much of the relevant literature has focused on uni-
variatemodels, there are situations inwhich relationships between
two or more time series may have a nonlinear structure. In such
cases it is reasonable to expect that more powerful inference pro-
cedures may be obtained by considering tests for neglected non-
linearity in multivariate instead of univariate models. A test of this
type was considered by Harvill and Ray (1999), who developed a
multivariate generalization of the nonlinearity test proposed by
Tsay (1986) and Luukkonen et al. (1988). A practical difficulty with
the application of such a test to real-world data is the large number
of terms required to construct the relevant artificial test regression.
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The inclusion of these terms may induce substantial collinearity
and necessitates the use of relatively long time series for the effec-
tive implementation of the test.

The present paper offers a way of overcoming these difficulties
by introducing amultivariate test for neglected nonlinearitywhich
achieves a reduction in the dimension of the set of relevant test
variables through the use of principal components. The modified
multivariate test is straightforward to construct and provides a sig-
nificant dimensional reductionwithout suffering fromany system-
atic level distortion or power loss relative to the original test. This
makes the modified test quite attractive for applications in which
relatively long stretches of datamay not be available, as is often the
case, for example, in macroeconometrics. What is more, as Harvill
and Ray (1999) also observed, multivariate tests are generally con-
siderably more powerful than univariate tests applied to the com-
ponents of a nonlinear multiple time series, suggesting that there
are clear advantages to testing the component series jointly rather
than individually.

The tests to be considered are described in Section 2. A simula-
tion study of the properties of the tests is presented in Section 3.
Section 4 summarizes and concludes.

2. Tests for neglected nonlinearity

Consider the vector autoregressive (VAR) model for a k-variate
time series {xt} given by

xt = µ +

p
j=1

Ajxt−j + ut , t = 0, ±1, ±2, . . . , (1)
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where p > 1 is a fixed integer,µ is a k×1 vector of real constants,Aj
(j = 1, . . . , p) are k× kmatrices of real constants, and {ut} is a se-
quence of independent, identically distributed k-dimensional real
random vectors with E(ut) = 0, detE(utu′

t) ≠ 0, and E(∥ut∥
4)

< ∞. It is also assumed that det(Ik−
p

j=1 Ajz j) ≠ 0 for all complex
z such that |z| 6 1, where Ik denotes the identity matrix of order
k. Under these assumptions the VAR equations (1) have a unique
causal, stationary and ergodic solution. The assumptions are also
sufficient for the least-squares estimator of the parameters of the
model to be consistent and asymptotically normal (e.g., Lütkepohl,
2005, Sec. 3.2.2). We are interested in testing the hypothesis that
there is no neglected nonlinearity in (1).

Given a sample (x−p+1, . . . , x0, x1, . . . , xT ), the test for ne-
glected nonlinearity considered by Harvill and Ray (1999) may be
implemented as a test for the hypothesis B2 = 0 in the auxiliary
multivariate regression

ût = b0 + B1vt + B2wt + ηt , t = 1, 2, . . . , T , (2)

where ût is the k × 1 vector of least-squares residuals from (1), vt
is the kp × 1 vector defined as vt = (x′

t−1, . . . , x
′
t−p)

′,wt is the
1
2kp(kp + 1) × 1 vector defined as wt = vech(vtv ′

t), (b0, B1, B2)
are artificial parameters, and ηt is an artificial error term. Putting
m =

1
2kp(kp+ 1), the linearity hypothesis is rejected for large val-

ues of the likelihood-ratio statistic

ΛHR = (T − τ)(ln det S0 − ln det S1), (3)

where S1 and S0 are the least-squares residual sum of squares ma-
trices from (2) with B2 unrestricted and B2 = 0, respectively, and
τ = kp+

1
2 (k+m+3) is Bartlett’s correction factor (see Anderson,

2003, Sec. 8.5.2). When {xt} satisfies (1), ΛHR has an approximate
χ2
km distribution for large T .1
An obvious difficulty with the application of a nonlinearity test

based on (3) in practice is the large dimensionm of the squares and
cross-products vectorwt . As a result, relatively long time series are
required for the implementation of the test procedure. In addition,
the components of wt are likely to be highly collinear, something
which can have adverse effects on the finite-sample performance
of the test.

We argue that the dimensionality and collinearity problems
may be effectively alleviated by the use of principal components.
Specifically, we suggest replacing wt in (2) by the n-dimensional
vector yt = (Y1t , . . . , Ynt)

′, 1 6 n 6 m, consisting of the first n
sample principal components of wt . Letting λ1 > · · · > λm denote
the eigenvalues of the sample correlation matrix of (w1, . . . ,wT ),
the ith principal component is computed as Yit = ξ′

iw
∗
t (i =

1, . . . ,m), where ξi is the normalized eigenvector associated with
λi andw∗

t is the standardized version ofwt . A test for nonlinearity
may then be implemented as a test for the hypothesis C2 = 0 in
the auxiliary multivariate regression

ût = c0 + C1vt + C2yt + εt , t = 1, 2, . . . , T , (4)

where (c0, C1, C2) are artificial parameters and εt is an artificial er-
ror term. Linearity is thus rejected for large values of the likelihood-
ratio statistic

ΛPC = (T − τ̄ )(ln det S0 − ln det S2), (5)

where τ̄ = kp +
1
2 (k + n + 3) and S2 is the least-squares residual

sum of squares matrix from (4). For large T , ΛPC may be approxi-
mately treated as χ2

kn under the null hypothesis that {xt} satisfies
the linear model (1).

In addition to the dimensional reduction achieved by trans-
forming into principal components, the collinearity problem

1 Note that Harvill and Ray (1999) use a test criterion based on an F-
approximation to Wilks’ lambda statistic (det S1/ det S0) instead of ΛHR .

associatedwith the use ofwt is effectively eliminated since sample
principal components are uncorrelated. A decision, however, needs
to be made in the implementation of the test based on ΛPC on the
number of principal components to be used. Among the various
methods available in the literature, the following rules for select-
ing n are popular in applied work and are used in the sequel2:
R1: n is the smallest integer such that m−1 n

i=1 λi > 0.95
(proportion-of-variance rule);

R2: n is the smallest integer such that λn+1 6 λ̃ for some prespec-
ified λ̃ > 0; following a recommendation of Jolliffe (1972), we
set λ̃ = 0.7 (average-root rule);

R3: n is the smallest integer such that λn+1 6 m−1 m
i=n+1 i

−1

(broken-stick rule).

It is finally worth remarking that the test procedures based on
criteria like those in (3) and (5) may be easily modified to allow
for a VARMA or VARMAX structure under the null hypothesis of
linearity (cf. Harvill and Ray, 1999). Furthermore, the finite-order
VAR model used in the construction of the tests may be viewed as
only an approximation to a potentially infinite-order VAR struc-
ture for {xt}. Asymptotic justification of inference procedures in
this case requires that the order of the VARmodel fitted to the data
increases, at some appropriate rate, simultaneously with the sam-
ple size (cf. Lütkepohl, 2005, Ch. 15).

3. Monte Carlo simulations

To assess the finite-sample properties of the tests based on the
statistics in (3) and (5), we carry out some Monte Carlo experi-
ments.We consider bivariate time series {xt} satisfying the follow-
ing models:
M1:

xt =


0.4 0
0 0.4


xt−1 +


0.3 0
0 0.3


xt−2 + ut

M2:

xt =


0.4 0.3
0.3 0.4


xt−1 + ut

M3:

xt =


0.4 −0.3

−0.3 0.4


xt−1 + ut

N1:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


0.10 −0.05

−0.05 0.10


× (xt−1 ◦ ut−1) + ut

N2:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


−0.05 0.10
0.10 −0.05


× (xt−1 ◦ ut−1) + ut

N3:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


0.0 0.1
0.1 0.0


(xt−1 ◦ xt−1) + ut

N4:

xt =


0.4 −0.3

−0.3 0.4


xt−1 +


−0.05 0.10
0.10 −0.05


× (xt−1 ◦ xt−1) + ut

2 For a detailed discussion of these rules the reader is referred to Jolliffe (2002,
Ch. 6).
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