
Obstacle-avoiding shortest path derivation in a multicore
computing environment

Insu Hong a,⁎, Alan T. Murray b, Sergio Rey c

a Department of Geology and Geography, Eberly College of Arts & Sciences, West Virginia University, United States
b Center for Spatial Analytics and Geocomputation, College of Computing and Informatics, Drexel University, United States
c GeoDa Center for Geospatial Analysis and Computation, School of Geographical Sciences and Urban Planning, Arizona State University, United States

a b s t r a c ta r t i c l e i n f o

Article history:
Received 30 March 2015
Received in revised form 1 October 2015
Accepted 1 October 2015
Available online 22 October 2015

Keywords:
Euclidean shortest path
Convex hull
Vector overlay
High performance computing
Parallelization
GIS

The best obstacle avoiding path in continuous space, referred to as the Euclidean shortest path, is important for
spatial analysis, location modeling and wayfinding tasks. This problem has received much attention in the
literature given its practical application, and several solution techniques have been proposed. However, existing
approaches are limited in their ability to support real time analysis in big data environments. In this research a
multicore computing approach is developed that exploits spatial knowledge through the use of geographic
information system functionality to efficiently construct an optimal shortest path. The approach utilizes the
notion of a convex hull for iteratively evaluating obstacles and constructing pathways. Further, the approach is
capable of incrementally improving bounds, made possible through parallel processing. Wayfinding routes
that avoid buildings and other obstacles to travel are derived and discussed.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The shortest path in continuous space around obstacles reflects
behavior, movement and travel. Often such a path is not recorded or
known a priori, yet is an essential and assumed input for spatial ana-
lytics (see Batta, Ghose, & Palekar, 1989; Bailey & Gatrell, 1995;
Fotheringham, Brunsdon, & Charlton, 2000; Fagerholt, Heimdal, &
Loktu, 2000; Klamroth, 2001; de Smith, Goodchild, & Longley, 2007;
O'Sullivan & Unwin, 2010; Rogerson, 2010). Navigation and wayfinding
also rely on efficient obstacle avoiding paths (Lozano-Pérez & Wesley,
1979; Hong & Murray, 2013b), requiring its derivation in realtime
to support travel. A situation involving a single obstacle is shown in
Fig. 1 where one is seeking the shortest possible path that avoids the
obstacle.

1.1. Euclidean shortest path

The efficient obstacle avoiding route through space has been
referred to as the Euclidean shortest path (ESP), and has attracted the
attention of many researchers. Techniques such as visibility graph
(Lozano-Pérez & Wesley, 1979; Welzl, 1985; Ghosh & Mount, 1991;
Pocchiola & Vegter, 1996), local visibility graph (Kim, Yu, Cho, Kim, &
Yap, 2004; Zhang, Papadias, Mouratidis, & Manli, 2005; Gao, Yang,

Chen, Zheng, & Chen, 2011), shortest path map (Mitchell, 1999), and
Voronoi diagrams (Papadopoulou & Lee, 1995) have been applied to
solve the ESP problems. The ESP supports wayfinding and navigation for
robotics (Lozano-Pérez & Wesley, 1979; Habib & Asama, 1991; Schmickl
& Crailsheim, 2007), trans-oceanic shipping (Fagerholt et al., 2000;
Bekker & Schmid, 2006; Bhattacharya &Gavrilova, 2007), locationmodel-
ing (Batta et al., 1989; Fagerholt et al., 2000; Klamroth, 2001), and more.

Methods to date for deriving the ESP construct a graph in order to re-
duce combinatorial search from infinite routing options through contin-
uous space to a finite, discrete set of line segments that define a graph,
guaranteeing inclusion of the ESP. However, the efficiency of existing
methods is considerably limited by the need to evaluate most/all obsta-
cle and region boundary vertices within a given area during graph con-
struction (Hong &Murray, 2013a). Even approaches employingfiltering
techniques, such as the local visibility graph (Kim et al., 2004; Zhang
et al., 2005), remain computationally intensive (Hong & Murray,
2013a). Therefore, these classic approaches have not been capable of
supporting real-time, big data planning and analysis contexts.

Recent work by Hong and Murray (2013a, 2013b) has focused on
new methods for deriving an ESP more efficiently. They exploit spatial
knowledge and geographic information system (GIS) functionality in
graph derivation, in a manner that guarantees inclusion of the optimal
ESP. By utilizing the notion of a convex hull, together with spatial oper-
ators, they explicitly consider only relevant obstacles impeding a given
origin–destination pair, thereby enabling construction of a more effi-
cient graph.

Computers, Environment and Urban Systems 55 (2016) 1–10

⁎ Corresponding author.
E-mail address: iaminsu@gmail.com (I. Hong).

Contents lists available at ScienceDirect

Computers, Environment and Urban Systems

j ourna l homepage: www.e lsev ie r .com/ locate /ceus

http://dx.doi.org/10.1016/j.compenvurbsys.2015.10.001
0198-9715/© 2015 Elsevier Ltd. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2015.10.001&domain=pdf
http://dx.doi.org/10.1016/j.compenvurbsys.2015.10.001
mailto:iaminsu@gmail.com
http://www.sciencedirect.com/science/journal/
http://dx.doi.org/10.1016/j.compenvurbsys.2015.10.001


Real-time derivation of paths, however, requires highly efficient
methods, beyond current capabilities. When obstacle density is high,
such as urban environments and building interiors, computational per-
formance of existing approaches is significantly degraded. This is largely
due to computationally intensive spatial operators that need to be re-
peatedly utilized. As a result, large data applications supporting naviga-
tion and wayfinding remain a challenge to support.

1.2. Parallelization approaches for spatial analysis

Techniques taking advantage of parallel computing environments
have proven useful for addressing various performance and scale
issues in spatial analysis (Griffith, 1990; Armstrong, 2000; Lanthier,
Nussbaum, & Sack, 2003; Zhang, 2010; Anselin & Rey, 2012; Rey,
Anselin, Pahle, Kang, & Stephens, 2013). Computing architecture for
parallelization has evolved from being a feature of supercomputers and
grid computation to relying onmulticore CPUs, General Purpose Graphics
Processing Unit (GPGPU) and virtual computing resources (Zhang, 2010;
Xia, Kuang, & Li, 2011; Anselin & Rey, 2012). These methods of
parallelization exploit the computing power of multiple CPU/GPU cores
in either single or multiple machines to boost performance, by undertak-
ing many tasks concurrently. Strategies for parallelization can be catego-
rized as task and data oriented (Barry, 2006; Gong, Tang, Bennett, &
Thill, 2013). Task parallelization decomposes processes into individual
functions that are then conducted both independently and simultaneous-
ly. In contrast, data parallelization uses identical functions but separates
data into multiple computing threads.

Multicore CPU parallelization techniques utilize the power of multi-
ple cores in a single CPU (Rey et al., 2013). Multicore CPU architecture
has emerged to overcome several fundamental limitations of single
core CPUs, utilizing a small number of coarsely-grained threads with
shared memory (Zhang, 2010; Gong et al., 2013). Multicore CPU
parallelization has been used for spatial analysis, including agent-
based simulation (Gong et al., 2013), LiDAR point cloud processing
(Guan & Wu, 2010), and thematic map classification (Rey et al., 2013).

GPGPU architecture exploits a GPU's numerical processing capabili-
ties and applies them to general purpose problems, even though GPU
architecture is intended to support 2D/3D visualization (Zhang, 2010).
Nvidia's CUDA (Compute Unified Device Architecture) and AMD's
OpenCL (Open Computing Language) are the most widely used
GPGPU frameworks. Of the two parallelization strategies, GPGPU is
more suited to data parallelization (Xia et al., 2011; Rey et al., 2013).
Spatial analysis applications such as interpolation and viewshed analy-
sis (Xia et al., 2011), large scale spatial regression (Zhang, 2010) and
thematic map classification (Rey et al., 2013) all have benefited from
GPGPU parallelization in terms of performance and scalability.

Parallelization techniques not only boost performance and help
overcome scale problems (Guan & Wu, 2010), but they also enable
more realistic representation of real world processes compared to

sequential processing (Openshaw & Turton, 1999). However, complete
reconstruction and/or reconceptualization of existing algorithms
is often required to achieve significant parallelization efficiencies
(Anselin & Rey, 2012).

1.3. Purpose

In this paper, an ESP derivation approach is introduced that utilizes
spatial filtering and parallel computing. The spatial filtering technique
dramatically reduces the number of obstacles that must be evaluated.
The parallel algorithm significantly improves performance by distribut-
ing spatial queries and hull construction. The next section details the
ESP and summarizes algorithms for solving it. A new parallel solution
approach is then introduced. Application results are presented, followed
by discussion and concluding comments.

2. Shortest path derivation

In this research, a solution approach is proposed to derive a path that
avoids obstacles, solving the ESP. This algorithm, referred to as parallel
convex graph (PCG), utilizes a novel spatial filtering technique com-
bined with a parallel computing approach to efficiently identify the op-
timal path. This approach effectively extends preliminary work detailed
in Hong and Murray (2013a, 2013b).

2.1. Convexpath algorithm

The convexpath algorithm introduced in Hong and Murray (2013a,
2013b) operates based on the construction of a minimum size graph
through which the optimal path can be found. It explicitly accounts
for only relevant obstacles for a given origin–destination pair by utiliz-
ing geometric properties of convex hulls. Three spatial operators are
extensively relied upon: interior intersection, convex hull, and line-
polygon overlay.

Definition (interior intersection): Given a polygon k, the interior of k,
denoted int(k), is the open set bounded by the polygon edges but dis-
joint from the edges.

Definition (convex hull): Given a set of objects S, the convex hull of S,
denoted CH(S), is the collection of all convex combinations, or the
smallest convex set containing objects in S.

Definition (line-polygon overlay): Given the line defined by two
points, v1v2; that intersects polygon k (v1v2∩intðkÞ≠∅), line-polygon
overlay splits k into multiple disjoint faces fj defined by the boundary
of k and segments of v1v2; such that ∪jfj = k.

The convexpath algorithm uses convex hull and interior intersection
operators to identify obstacles and construct a valid graph. Let's assume
a convex hull for three spatial objects, two points that represent the origin
and destination, vo, vd, and an obstacle k. Based on the minimum

Fig. 1. Three instances of obstacle avoiding movement: (a) no intersection, (b) interior intersection, (c) boundary intersection.

2 I. Hong et al. / Computers, Environment and Urban Systems 55 (2016) 1–10



Download English Version:

https://daneshyari.com/en/article/506272

Download Persian Version:

https://daneshyari.com/article/506272

Daneshyari.com

https://daneshyari.com/en/article/506272
https://daneshyari.com/article/506272
https://daneshyari.com

