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A B S T R A C T

We find empirical evidence that mean-reverting jump processes are not statistically adequate to model elec-
tricity spot price spikes but independent, signed sums of such processes are statistically adequate. Further
we demonstrate a change in the composition of these sums after a major economic event. This is achieved by
developing a Markov Chain Monte Carlo (MCMC) procedure for Bayesian model calibration and a Bayesian
assessment of model adequacy (posterior predictive checking). In particular we determine the number of
signed mean-reverting jump components required in the APXUK and EEX markets, in time periods both
before and after the recent global financial crises. Statistically, consistent structural changes occur across
both markets, with a reduction of the intensity and size, or the disappearance, of positive price spikes in the
later period. All code and data are provided to enable replication of results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Electricity spot markets have multiple fundamental drivers, for
example baseload and renewable production (Würzburg et al., 2013).
Disturbances in these drivers, such as plant outages and renewable
gluts, can clearly have different dynamic characteristics and conse-
quences. Since sharp disturbances create spikes in electricity spot
prices (Seifert and Uhrig-Homburg, 2007) we may hypothesise that,
over time, disturbances in different drivers give rise to spikes with sta-
tistically distinguishable directions, frequencies, height distributions
and rates of decay. It has recently been demonstrated that electricity
spot price formation can evolve over time (Brunner, 2014). Thus we
may also hypothesise that the statistical characteristics of electricity
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price spikes will evolve in step with underlying economic events and
developments, such as shifts in demand and increasing renewable
penetrations.

In this paper we find empirical support for these two hypotheses.
To this end we use multi-factor electricity spot price models, with
multiple superposed mean-reverting components and a seasonal
trend (Benth et al., 2007). This allows statistical patterns such as
mean reversion, seasonality and spikes to be reproduced in mod-
elling. Crucially for the present study, this approach also allows the
statistical modelling of multiple spike components with differing fre-
quencies, height distributions, decay rates, and directions (positive
or negative). We demonstrate that in some electricity markets two
types of positive spike are observed, while other markets require the
inclusion of negative spikes. The modelling of negative spikes is an
area of emerging interest (Fanone et al., 2013) as renewable pene-
trations, and hence gluts in renewable production, increase. Finally
we document evolution of the statistical spike structure through
periods of economic change by comparing two markets across two
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time periods, one before the recent global financial crises (2000–
2007) and another afterwards (2011–2015) and reflect on possible
interpretations of the results.

The calibration of multi-factor models is a highly challenging
task and existing approaches typically involve making strong a priori
assumptions, such as setting thresholds for jump sizes, which may
mask the true statistical structure. Methodologically, we develop
a Bayesian approach to calibration based on Markov Chain Monte
Carlo (MCMC) methods. This goes beyond previous work by making
minimal assumptions and enables us, for example, to estimate models
with multiple spike components acting in the same direction, a
feature which is confirmed empirically (in 2001–2006 data from the
APXUK electricity spot market). In order to assess the number of
mean-reverting jump components required we perform a Bayesian
procedure of posterior predictive checking.

1.1. Background and related work

Econometric models of electricity spot prices have a number of
important applications. They provide stochastic models which can be
used by traders to analyse financial options on power (Benth et al.,
2007), and by power system planners to conduct real options anal-
yses for flexible physical assets such as storage and cogeneration
(Moriarty and Palczewski, 2017; Kitapbayev et al., 2015). Further, the
pronounced price spikes which characterise spot electricity markets
are of central interest to electricity market regulators who monitor
and influence the economics of markets, aiming for example to
prevent perceived abuses of market power (Stephenson and Paun,
2001).

The complexity of electricity spot price models, and multi-factor
models in particular, makes their analysis statistically challenging
and has given rise to a substantial literature. A single-factor model
including the above stylised features was introduced by Clewlow
and Strickland (2000). Through the use of a threshold, the single-
factor model of Geman and Roncoroni (2006) incorporates two
jump regimes: when the price is below the threshold jumps are
positive, and when the price exceeds the threshold jumps are nega-
tive. Beginning with Lucia and Schwartz (2002) multi-factor models
have expressed the price as a sum of unobservable or latent pro-
cesses (factors) with distinct purposes, for example the modelling
of short-term and long-term price variations respectively. Unlike
many single factor models, multi-factor models do not imply a per-
fect correlation between changes in spot, future and forward prices,
which is consistent with the non-storability of electricity (Benth and
Meyer-Brandis, 2009). The model of Lucia and Schwartz (2002) has
two factors, namely a Gaussian mean-reverting process and an arith-
metic Brownian motion (that is, a scaled Brownian motion with drift).
Interestingly, while also developing a two-factor model, Seifert and
Uhrig-Homburg (2007) explicitly refer to the physical origins of var-
ious types of jumps. Beyond two-factor models, a simple and flexible
multi-factor model with jumps is given in Benth et al. (2007). Estima-
tion procedures for this model are discussed in Meyer-Brandis and
Tankov (2008), although the latter work adds strong assumptions in
order to obtain tractable methods.

The interdependency between parameters in multi-factor models,
in particular, is a challenge to calibration methods. A straightfor-
ward approach is to first separate the observed values into factors
using signal filtering techniques, in order to subsequently employ
classical maximum likelihood estimation. Such methods effectively
assume that some of these interdependencies may be neglected, and
this approach is taken for example in Meyer-Brandis and Tankov
(2008) and Benth et al. (2012). An alternative is the joint estima-
tion of latent factors, for which there are two leading methodologies
in the literature: expectation-maximisation (EM) and Markov Chain
Monte Carlo (MCMC) methods. While EM produces point estimates for

parameters in either a Bayesian or frequentist framework1 (see, for
example, Rydén et al., 2008), MCMC is able to generate samples from
posterior parameter distributions. Particularly in models with mul-
tiple parameters and latent processes, these interdependencies may
result in likelihood surfaces and posterior distributions which are
rather flat around their maxima. While EM suffers from Monte Carlo
errors which amplify the usual difficulties in numerical optimisation
for such problems, MCMC estimates the posterior distribution pro-
viding an analyst with a more complete picture of the interrelations
between parameters.

In related contexts, MCMC has been applied to fit continuous-time
stochastic volatility models to financial time series, where the price
is a diffusion process whose volatility is a latent mean reverting jump
process or the sum of a number of such processes (called a super-
position model). In this line of research a missing data methodology
is employed whereby the observed process is augmented with one
or more latent marked Poisson processes and the MCMC procedure
generates posterior samples in this high dimensional augmented
state space. Examples include Roberts et al. (2004), Griffin and Steel
(2006) and Frühwirth-Schnatter and Sögner (2009). Since energy
prices additionally exhibit jumps directly in their paths, MCMC has
been applied to extensions of these models in which a diffusion
process with stochastic volatility is superposed with a jump pro-
cess, see Green and Nossman (2008) in the context of electricity and
Brix (2015) for gas prices. Technically the latter two papers estimate
a discrete approximation of the models whereas in this study we
pursue exact inference for continuous time models.

1.2. Contribution

From the modelling point of view, a novelty of the present study is
that the price is a superposition of more than one jump component,
each with its own sign, frequency, size distribution and decay rate,
along with a diffusion component. This approach acknowledges that
the negative price spikes attributable to rapid wind power fluctua-
tions may, for example, have quicker decay than the infrequent larger
positive spikes due to major disturbances such as outages of a tradi-
tional generation plant. The inclusion of multiple jump components
also addresses the following problem identified in Green and Nossman
(2008) and Brix (2015). In two-factor models, jumps of intermediate
size must be accounted for either in the diffusion process (forcing
unlikely spikes in the Brownian motion path) or the jump process
(implying additional jumps). While the former can lead to an over-
estimation of volatility in the diffusion process, the latter may result
in an overestimation of the intensity of the jump process, which is
independent of the jump sizes. The inclusion of a second jump pro-
cess with its own mean jump size and rate of mean reversion removes
this dichotomy, offering an alternative to the inclusion of stochastic
volatility in the diffusion process.

Our first methodological contribution is an MCMC algorithm
for exact Bayesian inference on superposed OU models with diffu-
sion and multiple jump components. We contrast exact inference
with a commonly used estimation procedure using a discrete time
model which is an approximation to continuous dynamics. While this
approximation is often used for practical reasons including simplified
and/or tractable implementation, it is not possible to assess a priori
the extent of the estimation error introduced by the approximation

1 Two possible approaches to the calibration of model parameters are commonly
referred to as frequentist and Bayesian. In the frequentist approach, one seeks to derive
point estimates of ‘true’ parameter values from the data, for example by finding the
maximiser of a likelihood function. An alternative viewpoint is taken in the Bayesian
approach, where the unknown parameters are first assigned a probability distribution
representing prior beliefs about their value. This prior distribution is combined with
the observed data to produce an updated probability distribution representing the
posterior beliefs about the parameters given both the prior and the data.
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