
Exploratory analysis of time series data: Detection of partial similarities,
clustering, and visualization

Yukio Sadahiro a,⇑, Tetsuo Kobayashi b

a Center for Spatial Information Science, University of Tokyo, Japan
b Department of Geography, Florida State University, Japan

a r t i c l e i n f o

Article history:
Received 5 May 2013
Received in revised form 27 January 2014
Accepted 2 February 2014
Available online 6 March 2014

Keywords:
Time series data
Partial similarity
Clustering

a b s t r a c t

A new exploratory method for analyzing time series data is proposed. A computational algorithm detects
partial similarities between simultaneously occurring time series data and clusters the data into groups
based on their similarities. A graphical representation that visualizes the data clustering process helps us
understand similarity between time series data and classifies them into smaller subgroups. Numerical
measures evaluate the effectiveness of clusters and provide a means for testing their statistical signifi-
cance. The proposed method was applied to an analysis of the change of population distribution during
a day in Salt Lake County, Utah, USA. This application supports the technical soundness of the method and
provides empirical findings.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Exploratory analysis of time series data is an important topic in
urban and environmental analysis. Graphical visualization of time
series data is helpful in identifying and interpreting the relation-
ships between data, for example, the relationship between the eco-
nomic environment, labor market, demographic situation, and
migration patterns (Bronars & Jansen, 1987; Gauthier, Tanaka, &
Smith, 1992; Lane, 2010; Lane, 2012; Mielke, Relethford, &
Eriksson, 1994; Unwin A., 1996). Comparison of periodic patterns,
such as air pollution over a day and vegetation type over a year,
helps us investigate their autocorrelation, detect anomalies, and
predict unexpected changes (Nowak, Crane, & Stevens, 2006;
Viovy, 2000; Xia, Rui, Bing, & Qingxi, 2008).

Classification is an effective and powerful method of explor-
atory analysis (Antunes & Oliveira, 2001; Gaber, Zaslavsky, &
Krishnaswamy, 2005; Liao, 2005; Xing, Pei, & Keogh, 2010).
Classification of time series remote sensing data permits us to gen-
erate highly accurate land cover maps (Gray & Song, 2013; Okabe &
Masuyama, 2001; Petitjean, Inglada, & Gancarski, 2012; Verhoef,
Meneti, & Azzali, 1996). Climatologists employ cluster analysis to
find climatologically homogeneous geographical regions
(Bengtsson & Cavanaugh, 2008; Fovell & Fovell, 1993; Gong &
Richman, 1995; Richman & Lamb, 1985). Classification of temporal
water quality patterns allows us to delineate homogeneous regions
in an ecosystem and optimize the location of water monitoring

sites (Henderson, 2006; Ignaccolo, Ghigo, & Giovenali, 2008;
Pastres, Pastore, & Tonellato, 2011). In addition, the classification
and visualization of traffic accident patterns are useful to detect
region-specific causes of accidents (Lavrač, Jesenovec, Trdin, &
Kosta, 2008).

There are two types of classification methods that are applica-
ble to time series data. Whole matching methods evaluate the
overall similarity between the data during the same time period
(Keogh, Chakrabarti, Mehrotra, & Pazzani, 2001; Keogh & Lin,
2005), and subsequence matching methods classify time series
data based on their partial similarities (Chen J. R., 2007; Denton,
Besemann, & Dorr, 2008; Fu, Chung, Luk, & Ng, 2003; Goldin,
Mardales, & Nagy, 2006; Keogh & Lin, 2005). Fig. 1 illustrates the
difference between these methods. Whole matching methods
classify only T1 and T2 into the same group based on their overall
similarity, and subsequence matching methods detect partial sim-
ilarities between the data, which are indicated by bold lines, and
cluster T1, T2, T3, and T4 as one group. If scaling along the vertical
axis is permitted, subsequence matching methods can find the
similarity between T1 and T5, which is indicated by solid bold lines
and dotted lines in Fig. 1.

Whole matching methods run faster; however, subsequence
matching methods are capable of detecting a wider variety of
partial similarities in temporal patterns. One drawback of the latter
is the increased computational complexity due to their flexibility
in the temporal dimension. They permit time lags between similar
patterns, as can be seen for T1 and T4 in Fig. 1. However, this
flexibility is not always essential in geography, ecology, and
climatology because similar patterns at different times often have
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different meanings. For example, climatology discriminates rainfall
peaks for different seasons. The comparison of temporal patterns is
performed within the same or close time period across different
locations. In consideration of their computational cost, subse-
quence matching methods are too flexible to serve this purpose.

To resolve this problem, this paper proposes a new method for
analyzing time series data. The method clusters time series data
into similar groups based on their partial similarities within the
same time period. This improves the computational efficiency at
the expense of flexibility in the temporal dimension. The proposed
method classifies T1, T2, and T3 into the same group in Fig. 1 while it
discriminates T4.

In this paper, time series data is referred to as trends for simplic-
ity. The remainder of this paper is organized as follows. Section 2
proposes an exploratory method for analyzing trends. Section 3 ap-
plies the method to the analysis of changing population distribu-
tion during a day in Salt Lake County, Utah, USA, and Section 4
summarizes the findings from the case study and provides a
discussion.

2. Method

Suppose a set of M trends during the time period [sS,sE]. The ith
trend is denoted by Ti and is expressed as the numerical function
fi(t) (t 2 [sS,sE]).

2.1. Preprocessing

The Neighborhood of Ti, denoted by Ni, is the buffer area bound
by the following four functions:

yiUðtÞ ¼ fiðtÞ þ b; ð1Þ

yiLðtÞ ¼ fiðtÞ � b; ð2Þ

t ¼ sS; ð3Þ

and

t ¼ sE; ð4Þ

where b is the buffer distance. Eqs. (1)–(4) define the upper, lower,
left, and right bounds of Ni, respectively. Fig. 2a shows the neighbor-
hoods of trends T1, T2, T3 and T4. Note that the neighborhood is not
identical to the buffer area usually generated in GIS packages. The
boundaries of neighborhoods are given by vertically shifted trend
functions and the vertical lines at sS and sE.

The intersection of all neighborhoods yields fragmented small
polygons, as is shown in Fig. 2b. This paper calls them polygons
and denotes as K = {P1,P2, . . . ,PK}. The earliest and latest times of
polygon Q are given by tS(Q) and tE(Q), respectively. The length of
Q is defined as

lðQÞ ¼ tEðQÞ � tSðQÞ: ð5Þ

Trends are regarded as similar if their neighborhoods overlap.
The length of an overlap indicates the degree of similarity between
trends. In Fig. 2a, for instance, T1 is more similar to T2 than T3,
which is represented by the length of their overlaps, i.e., the length
of the neighborhood overlap for T1 and T2 is longer than that of T1

and T3. The number of neighborhoods overlapping on a polygon
indicates the number of similar trends associated with the poly-
gon. Polygons of dark shades in Fig. 2a suggest that many trends
are partially similar around the polygons.

A center is a long set of adjacent polygons on which many
neighborhoods overlap. Centers represent partial similarities be-
tween trends. The minimum length and minimum number of
neighborhoods are given as Lmin and a a priori.

Any neighborhood can be represented as a unique set of poly-
gons. Let #i be a set of polygons that comprise neighborhood Ni.
The set of neighborhoods is denoted by # = {#1, #2, . . .,#M}. The
number of elements and the jth element in the set #i are denoted
by #(#i) and e(#i, j), respectively.

2.2. Detection of centers

Since centers represent partial similarities between trends,
their detection allows us to cluster trends based on these partial
similarities. To this end, this subsection proposes a computational
algorithm. The detection of a center is described as an expansion
process of a set of polygons. We first choose a polygon shared by
the most neighborhoods as an initial set. This set gradually ex-
pands by incorporating its longest adjacent polygons for as long
as possible. The length of an adjacent polygon is measured by its
length outside the set of polygons. Expansion terminates when
the set of polygons becomes longer than Lmin or the number of
its overlapping neighborhoods becomes smaller than a. Once we
detect a center, we remove the polygons in the set and repeat
the same process until no further center is detected.

Fig. 3 illustrates the detection of a center. We first choose P1 as
an initial set because it is contained in the neighborhoods of all the
trends (Fig. 3a). We compare its adjacent polygons P2 and P3 by
their length outside the set {P1}, which are indicated by bold solid
lines and dotted lines in Fig. 3b. Since the dotted lines are longer
than the solid lines, the set expands to {P1, P2} (Fig. 3c). We then
evaluate its adjacent polygons {P3, P4, P5, P6} by their length outside
the set, and choose the longest polygon P4. Since the set is longer
than Lmin, detection terminates to yield the final results {P1, P2,
P4} (Fig. 3d). The set of polygons grows from {P1} to {P1, P2} and
{P1, P2, P4} while its related trends reduce from {T1, T2, T3, T4} to
{T1, T2, T3} and {T1, T2}.

The set of centers is denoted by X = {C1, C2, . . . ,CN}, each of
which consists of a set of polygons. A trend is said to be assigned
to Ci if its neighborhood contains all the polygons composing Ci.
Let Ci be the set of neighborhoods containing center Ci. The set
of neighborhood sets is denoted by C = {C1,C2, . . .,CN}. Centers re-
late trends and polygons. This paper refers to this relationship as
an assignment. A trend can be assigned to multiple centers since
trends are clustered based on their partial similarities.

Fig. 4 shows a computational algorithm for extracting centers.
Algorithm Center Extraction (CE) is an extension of Algorithm TE
proposed by Sadahiro, Lay, and Kobayashi (2013), which was orig-
inally developed by Kharrat, Popa, Zeitouni, and Faiz (2008). Since

T3

T5

T4

T1

T2

Fig. 1. Evaluation of similarity between time series data. Whole matching methods
classify only T1 and T2 into the same group. Subsequence matching methods detect
partial similarities between the data, which are indicated by bold lines, and cluster
T1, T2, T3, and T4 as a group. If the scaling along the vertical axis is permitted,
subsequence matching methods even find the similarity between T1 and T5, which
is indicated by bold solid and dotted lines.

Y. Sadahiro, T. Kobayashi / Computers, Environment and Urban Systems 45 (2014) 24–33 25



Download English Version:

https://daneshyari.com/en/article/506384

Download Persian Version:

https://daneshyari.com/article/506384

Daneshyari.com

https://daneshyari.com/en/article/506384
https://daneshyari.com/article/506384
https://daneshyari.com

