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An integrated dynamic optimization strategy is presented for block copolymerization processes. First the reactor model,

which has unstable modes and may lead to unbounded profiles under certain design and operating conditions, is derived.

Second, optimal recipes for operating of the copolymerization process are determined. Finally, an optimization strategy

for the integration of scheduling and dynamic process operation for general continuous/batch processes is considered. The

resulting approach leads to significant improvements in productivity, while maintaining safe operation and satisfaction of

product specifications.
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1 Introduction

Optimization of dynamic systems was significant, high im-
pact applications ranging from aeronautical applications
[1, 2], robotics [3, 4], and process control [5]. In the design,
operation and integration of chemical process systems, opti-
mization of differential-algebraic equation models delivers
efficient and safe operation in both batch and continuous
processes. For the latter case, optimal transitions are needed
to handle the dynamics of product grade changes, cyclic
operations, catalyst deactivation over time, and fouling of
heat transfer surfaces in a production cycle. For batch pro-
cesses, optimal operating recipes need to be generated for
dynamic operation of batch units. These batch units also
need to integrate to the overall plant and to an operating
cycle. This integration includes planning, scheduling, and
control tasks that occur over broad time and length scales.
For the integrated process to attain its peak performance,
the optimization model and solution strategy must include
an accurate behavioral description, which is best captured
by a detailed, first principles process model. This study
reviews an integrated dynamic optimization strategy for a
ring-opening polymerization process for copolymer pro-
duction. Through the application of advanced optimization
strategies a significant performance improvement over con-
ventional operations is demonstrated.

In the next section the statement of the dynamic optimi-
zation problem is introduced and a number of approaches
to solve this problem, with a focus on the simultaneous col-
location approach and a summary of its characteristics and
advantages, are reviewed. The next three sections demon-

strate the power of the simultaneous approach on the
semi-batch ring-opening copolymerization process. Sect. 3
focuses on detailed reactor modeling through a population
balance approach as well as a smaller model based on the
method of moments. Sect. 4 describes and solves the
dynamic optimization problem for the optimal recipe. In-
cluded in the problem formulation are the detailed kinetics,
product specifications, and safety constraints. Also, both
population and moment models are considered in the prob-
lem formulation and optimization of both reactor models
are compared. Sect. 5 then considers the integration of
batch processes with the logistics of scheduling and inter-
actions with other units. An optimization formulation is
briefly described that links the generation of optimal oper-
ating recipes together with a resource task network (RTN)
for the production of multiple products in an overall plant.
Finally, conclusions and directions for future work are given
in the last section.

2 Dynamic Problem Statement

The optimization problem stated in the following form is
considered:
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min
x tð Þ;y tð Þ;u tð Þ;p

F z tfð Þð Þ s:t:
dz
dt
¼ f z tð Þ; y tð Þ; u tð Þ; pð Þ; z 0ð Þ ¼ z0 pð Þ

gE z tð Þ; y tð Þ; u tð Þ; pð Þ ¼ 0
gI z tð Þ; y tð Þ; u tð Þ; pð Þ £ 0
hE z tfð Þð Þ ¼ 0; hI z tfð Þð Þ £ 0

(1)

The variables in this optimization problem are the time-
independent parameters p as well as differential state vari-
ables z(t), algebraic variables y(t), and control variables u(t),
which are functions of the scalar t ∈ [t0, tf ]. As constraints
differential and algebraic equations (DAEs) are given by
Eq. (1) and without loss of generality it is assumed that this
DAE system is index one.

As shown in Fig. 1, a number of approaches can be taken
to solve Eq. (1). DAE optimization problems are solved
using a variational approach or by various strategies that
apply nonlinear programming (NLP) solvers to the DAE
model. Until the 1970s, these problems were solved using
an indirect or variational approach, based on the necessary
conditions for optimality obtained from Pontryagin’s Maxi-
mum Principle [1, 6]. For problems without inequality con-
straints, these conditions can be written as a set of DAEs.
Obtaining a solution to these equations requires careful
attention to the boundary conditions. Often the state vari-
ables have specified initial conditions and the adjoint vari-
ables have final conditions; the resulting two-point bound-
ary value problem (TPBVP) can be addressed with different
approaches, including single shooting, invariant embedding,
multiple shooting, or through discretization methods such
as collocation on finite elements or finite differences. On
the other hand, if the problem requires the handling of
active inequality constraints, finding the correct switching
structure as well as suitable initial guesses for state and
adjoint variables is often difficult. Early approaches to deal
with these problems can be found in [1].

Methods that apply NLP solvers can be separated into
two groups, sequential and simultaneous strategies. In the
sequential methods, also known as control vector para-

meterization, only the control variables are discretized. In
this formulation the control variables are represented as
piecewise polynomials [7 – 9] and optimization is per-
formed with respect to the polynomial coefficients. Given
initial conditions and a set of control parameters, the DAE
model is embedded within an inner loop controlled by an
NLP solver. Parameters p that represent the control vari-
ables are updated by the NLP solver itself. Gradients of the
objective and constraint functions with respect to input
decisions are calculated either by direct sensitivity equations
derived from the DAE system, or by integration of the
adjoint equations; several codes were developed for both
sensitivity approaches.

Sequential strategies are relatively easy to construct and
apply, as they incorporate the components of reliable DAE
and NLP solvers. On the other hand, repeated numerical in-
tegration of the DAE model is required, which may become
time consuming for large scale problems. However, optimal
control problems with many degrees of freedom require
expensive (direct) sensitivity calculations that dominate the
computation cost and also retain calculation noise that
impedes the performance of the NLP solver. Moreover,
sequential approaches are known to fail on unstable dy-
namic systems [10, 11]. Finally, state constraints can be
handled only approximately by sequential methods, within
the limits of the control parameterization.

Multiple shooting is a simultaneous approach that inher-
its many of the advantages of sequential approaches. Here
the time domain is partitioned into smaller time elements
and the DAE models are integrated separately in each
element, along with corresponding sensitivity equations
[12 – 14]. Control variables are parametrized as in the
sequential approach and gradient information is obtained
for both the control variables and the initial conditions of
the state variables in each element. Finally, equality con-
straints are added to the NLP to link the elements and
ensure that the states are continuous across each element.
As with the sequential approach, inequality constraints for
states and controls can be imposed directly at the grid
points, and care is needed to avoid noisy and expensive sen-
sitivity calculations. Finally, in the simultaneous collocation
approach, both the state and control profiles in time using
collocation of finite elements are discretized. This approach
corresponds to a particular implicit Runge-Kutta method
with high order accuracy and superior stability properties.
Also known as fully implicit Gauss forms, these methods
can be expensive (and are not widely applied) as initial val-
ue solvers. However, for boundary value problems and
optimal control problems, this approach is essential as it
requires far fewer time steps to obtain accurate solutions.Figure 1. Solution strategies for dynamic optimization.
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