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a b s t r a c t

It is common in the fields of rock and environmental magnetism to unmix magnetic mineral components
using statistical methods that decompose various types of magnetization curves (e.g., acquisition, de-
magnetization, or backfield). A number of programs have been developed over the past decade that are
frequently used by the rock magnetic community, however many of these programs are either outdated
or have obstacles inhibiting their usability. MAX UnMix is a web application (available online at http://
www.irm.umn.edu/maxunmix), built using the shiny package for R studio, that can be used for un-
mixing coercivity distributions derived from magnetization curves. Here, we describe in detail the sta-
tistical model underpinning the MAX UnMix web application and discuss the programs functionality.
MAX UnMix is an improvement over previous unmixing programs in that it is designed to be user
friendly, runs as an independent website, and is platform independent.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetic minerals are ubiquitous in a variety of natural sys-
tems. Progress in the fields of environmental and rock magnetism
has increasingly led to an ability to quantify the abundance, grain
size, and chemical composition of various magnetic minerals,
which has been critical in enhancing our understanding of an ar-
ray of natural and anthropogenic processes (see recent reviews by
Maher, 2011; Liu et al., 2012; Hatfield, 2014; Maxbauer et al.,
2016). In particular, there are a variety of methods available that
allow for the statistical unmixing of measured magnetization
curves (Robertson and France, 1994; Stockhausen, 1998; Kruiver
et al., 2001; Heslop et al., 2002; Egli, 2003; Heslop and Dillon,
2007; Heslop, 2015 provide an excellent review). These methods
are widely applied in the literature and have helped to advance
our understanding of the processes which govern magnetic mi-
neral formation, transformation, and deposition.

Robertson and France (1994) made the seminal observation
that the shape of isothermal remanent magnetization (IRM) ac-
quisition curves for an assemblage of grains of a single magnetic
mineral could be approximated by a cumulative log-Gaussian
function given three parameters: the mean coercivity of an in-
dividual grain population (Bh), the component saturation magnetic
remanence (Mr), and the dispersion parameter (DP; given by one

standard deviation in log space). For a given field value of B, the
IRM of an individual component is given by Robertson and France
(1994):
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In the case that a specimen is composed of multiple magnetic
mineral components, the individual IRM acquisition functions
(given by Eq. (1)) for each component can be added linearly to
approximate the measured data (Robertson and France, 1994;
Kruiver et al., 2001). Kruiver et al. (2001) popularized the use of a
gradient acquisition plot (GAP) to assist in curve fitting. Sub-
sequent studies refer to the GAP as the coercivity distribution (or
spectra; e.g., Heslop et al., 2002, 2004; Egli, 2003), which is the
absolute value of the first derivative of the magnetic acquisition
dataset (Egli, 2003). Coercivity distributions can be modeled in a
similar way to IRM acquisition curves by approximation of a
probability density function using the same three parameters
(Kruiver et al., 2001; Heslop et al., 2002):
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where n is the number of magnetic mineral components within a
specimen and k corresponds to a log-normal probability density
function. From Eq. (2), it is possible to calculate a function that
represents the continuous realization of the discrete measured
data. Various statistical procedures are used to determine the
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goodness of fit for a particular model compared to the measured
data using either statistical tests (F-test and t-test; Kruiver et al.,
2001) or automated iterative approaches (Expectation Algorithm;
Heslop et al., 2002). These models are accessible for readers to use
through downloads of an excel workbook (IRM-CLG; Kruiver et al.,
2001) and a Fortran90 executable program (IRM UnMix, available
for PCs; Heslop et al., 2002). Fitting is achieved through either
manual entry (Kruiver et al., 2001) or through automated opti-
mization (Heslop et al., 2002).

The functions described by Eqs. (1) and (2) operate under the
assumption that coercivities of a given magnetic mineral grain
population can be closely approximated by a log-normal dis-
tribution (Robertson and France, 1994; Kruiver et al., 2001; Heslop
et al., 2002; Egli, 2003). However, it is well known that many
natural samples contain magnetic mineral components whose
coercivities are not log-normal (Egli, 2003, 2004b; Heslop et al.,
2004). To account for non-normality, Egli (2003) introduced the
skew generalized Gaussian (SGG) function:
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where x is equivalent to B in Eqs. (1) and (2), μ is the equivalent of
Bh, s is equivalent to DP, q is related to skewness, and p is related to
kurtosis (Egli, 2003). The variable ⁎x arises from a substitution of x
with ⁎x , where ⁎ = ( )x g x q, (see Egli, 2003, for details). A Gaussian
distribution is equivalent to the SGG when q¼1 and p¼2 (de-
creasing q from 1 to 0 creates left skewed distributions, changing
the sign creates right skewed distributions; decreasing p increases
peakedness and increasing p enhances squaredness, Egli, 2003).
The SGG function has major advantages over simple Gaussian
distributions because it can better account for non-normal beha-
vior that is common in natural samples. Deviations from normality
can necessitate the need for additional normal or log-normal
components within a model to achieve a satisfactory fit, whereas a
single skew-component may prove sufficient (see Egli, 2003; He-
slop, 2015). The MAG-MIX method of Egli (2003) is available as a
set of Mathematica notebooks (CODICA, for deriving coercivity
distributions and GECA, for analyzing coercivity distributions) that
include graphical user interfaces to assist in data processing. MAG-
MIX has been used to analyze the coercivity spectra from a wide
range of natural samples and details of those results can be found
in Egli (2004a,b,c).

The methods provided by Kruiver et al. (2001), Heslop et al.
(2002), and Egli (2003) have proven to be an excellent basis for
more detailed interpretation of the magnetic mineralogy of sedi-
ments and other geologic samples. However, despite the certain
advances presented by Egli (2003), which continues to be utilized
by researchers (e.g., Lascu and Plank, 2013; Li et al., 2013; Ludwig
et al., 2013; Liu et al., 2014), many studies continue to utilize older
methods from Kruiver et al. (2001) (recent examples include Font
et al., 2012; Yamazaki and Ikehara, 2012; Ao et al., 2013; Hu et al.,
2013; Abrajevitch et al., 2015) and Heslop et al. (2002) (e.g., Ro-
berts et al., 2012; Channell and Hodell, 2013; Weil et al., 2014;
Dorfman et al., 2015). This may be in response to difficulties in
applying the SGG method, or in response to the software being
available only for Mathematica users (which requires expensive
licensure). Here, we present a new program, MAX UnMix, that was
designed in the statistical computing language R (which is open
source and available for MAC, PC, and Linux; R-Core-Team, 2015)
and built using shiny for R studio (Chang et al., 2015). The ap-
plication functions as a web application (available online at http://
www.irm.umn.edu/maxunmix) where users interact with the

model via a graphical user interface. Supporting information, in-
cluding instructional videos and a user manual, are available on
the MAX UnMix webpage. Below, we describe the statistical model
underpinning MAX UnMix and provide a number of examples to
highlight aspects of the model's performance.

2. Model description

The observed coercivity distribution, C, of a measured set of
magnetization data (M; may be acquisition, demagnetization, or
backfield curves) is defined as the absolute value of the first de-
rivative of the raw data:
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where M and B are the respective magnetization and field values
for a given dataset. Note we define C in Eq. (4) using the log(B)
scaling, however various field scalings can be used by simple
substitution (e.g., Egli, 2003). MAX UnMix utilizes the predict()

function to calculate C on either a log10 or linear scale, depending
on user selection. In line with previous methods, we recommend
fitting magnetization curves with a minimum of 25 data points,
although generally it is advantageous to have more if possible
(Kruiver et al., 2001).

It is often necessary to remove measurement noise within da-
tasets by either application of a spline function (Heslop et al.,
2002) or more sophisticated filtering (e.g., the CODICA program
described by Egli, 2003). In MAX UnMix, a simple spline function,
smooth.spline(), allows the user to determine the appropriate
level of smoothing. The smoothing factor, sf, can be varied be-
tween 0 and 1, where sf¼0 is equivalent to no smoothing and
sf¼1 is the maximum degree of smoothing for a given dataset.
Spline fitting prevents large influences of measurement noise,
however over smoothing of data can result in spurious features
(typically at low and high-fields; see Heslop et al., 2002; Heslop,
2015) and careful observation of this balance should be monitored
by users. To avoid complications resulting from smoothing, users
have the option to perform smoothing on either raw magnetiza-
tion data (“Magnetization smoother”, C derived from smoothed
magnetization data) or raw coercivity data (“Coercivity smoother”,
C is smoothed directly from raw coercivity data). These choices
work variously well at low and high fields and users can determine
which method is optimal for a given dataset. As a general rule, the
effects of measurement noise are best reduced by maximizing the
degree of smoothing imposed on a data set, while taking special
care to avoid ‘over-smoothing’, which can create artifacts.

When a suitable C has been determined from the measured
data, the aim is to determine a model function that approximates C
for a given set of field values, B. Within the MAX UnMix frame-
work this is achieved using a skew-normal distribution from the
fGarch package in R (Wuertz and Chalabi, 2015). The dsnorm()

function within the package creates skew-normal probability
density functions that we use within our model in the following
form:
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where pi is a proportion factor that describes the height of the
distribution for each component (pi can range from 0 to 1, nor-
malized such that a value of 1 is equivalent to the maximum of C),

()w is the skew-normal probability density function, Si is a para-
meter describing skewness (for Si less than 1 distributions skew
left, and vice versa), and Cm represents the modeled approxima-
tion of C. In the special case that S¼1, ()w is equivalent to the
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