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a b s t r a c t

In recent years, new platforms and sensors in photogrammetry, remote sensing and computer vision
areas have become available, such as Unmanned Aircraft Vehicles (UAV), oblique camera systems,
common digital cameras and even mobile phone cameras. Images collected by all these kinds of sensors
could be used as remote sensing data sources. These sensors can obtain large-scale remote sensing data
which consist of a great number of images. Bundle block adjustment of large-scale data with conven-
tional algorithm is very time and space (memory) consuming due to the super large normal matrix
arising from large-scale data. In this paper, an efficient Block-based Sparse Matrix Compression (BSMC)
method combined with the Preconditioned Conjugate Gradient (PCG) algorithm is chosen to develop a
stable and efficient bundle block adjustment system in order to deal with the large-scale remote sensing
data. The main contribution of this work is the BSMC-based PCG algorithm which is more efficient in
time and memory than the traditional algorithm without compromising the accuracy. Totally 8 datasets
of real data are used to test our proposed method. Preliminary results have shown that the BSMC method
can efficiently decrease the time and memory requirement of large-scale data.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bundle block adjustment is an inevitable and crucial procedure
in the photogrammetry, remote sensing and computer vision area.
Especially in the 3D model reconstruction with multiple sensors
such as UAV camera, oblique camera system and even cell phone
cameras. A lot of research works have been done for UAV camera
systems (Mathews and Jensen, 2013; Ai et al., 2015; Tong et al.,
2015; Frueh et al., 2004; Dahlke and Wieden, 2013). Oblique images
(Besnerais et al., 2008), ordinary digital cameras (Dandois and Ellis,
2010), and even internet images (Snavely et al., 2008; Agarwal et al.,
2010, 2011). Those images are always large-scale data. They bring us
more redundant observations, but in the mean time, they need
more computation and memory resources. The main challenge of
bundle block adjustment of these large-scale data is storing and
computing the super large normal equation produced by a large
number of images and tie points. Thus how to solve the big normal
equation is a key issue. There are usually two categories of solu-
tions, direct method and iterative method. Direct method is always

referred to the conventional Levenberg–Marquardt (LM) algorithm.
It was a most popular algorithm in the last few decades for solving
non-linear least square problems. Conventional aerial photo-
grammetry procedure acquired images on an airborne platform and
the images are regularly arranged. Thus the normal matrix has a
sparse band structure which can be easily solved with memory
space equal to the bandwidth of the sparse band structure. But the
UAV images, oblique images, cell phone image and especially the
internet images are mostly arranged irregularly. So the normal
matrix of these data has no band characteristics. The LM method
has to invert the full sparse matrix. It is no longer suitable for
processing the large-scale remote sensing data. The iterative
method includes a lot of algorithms. The most widely used iterative
method is Conjugate Gradient (CG) algorithm which was firstly
proposed in 1952 (Hestenes and Stiefel, 1952), but it's not widely
used due to its drawbacks in precision and stability until recently.
This method multiplies the normal matrix and the residuals vector
of normal equation, forming a Krylov subspace (Saad, 1981), and
then iteratively computes the answer of normal equation, and
eventually end up to a convergence value which is close enough to
the true answer (Hestenes and Stiefel, 1952). CG was further ex-
tended to an advanced method called Preconditioned Conjugate
Gradient (PCG) which uses a preconditioner to reduce the condition
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of the normal matrix so as to improve the converging speed (Bru
et al., 2008; Byröd and Åström, 2009, 2010; Jian et al., 2011; Li and
Saad, 2013).

The main advantage of the iterative method is that the normal
equation can be solved without explicitly forming the full normal
matrix which is a relatively high cost in both computation and
storage phase. It gives us a chance to solve the super large normal
equation produced by large-scale data consisting of more than
hundreds of thousands even millions of images on a common
personal computer. The normal matrix is always sparse and in-
cludes a lot of zero elements. So only non-zero elements and their
position indexes in the sparse matrix need to be stored, this
strategy can largely compress the normal matrix. A widely used
matrix compress method called Compressed Sparse Row (CSR)
uses three one dimension data arrays to store non-zero elements
and the corresponding necessary information. But we found in
practice that this storage method is not suitable for the normal
matrix update since that the normal matrix are formed and up-
dated point by point in bundle block adjustment. After the sub-
normal-matrix of each point is calculated, the whole normal ma-
trix needs to be updated. When a CSR storage method is adopted,
finding the position of the sub-normal-matrix of current point in
the full normal matrix is very time consuming and complicated.
Because the CSR stores matrix elements one by one while the sub-
normal-matrix is an n*n block (n is the number of unknown
parameters related to the current point), all the elements of the
sub-normal-matrix have to be updated one by one. So we propose
a Block-based Sparse Matrix Compression (BSMC) format to
compress the whole normal matrix in order to decrease its
memory requirement while making the normal matrix easy to be
updated.

In this paper, PCG algorithm is applied to solve the large normal
equation. The Jacobi preconditioner is chosen to decrease the
iteration times of PCG process. The BSMC method is introduced to
combine with PCG aiming to decrease the memory requirement.
The main purpose of this work is to build a stable and efficient
bundle block adjustment system to deal with large-scale remote
sensing data. Part of the test data are downloaded from a public
data source website which was built and shared by Sameer
Agarwal in University of Washington (Agarwal et al., 2010). UAV
images, oblique images and cell phone images are also used as test
data. We have analyzed and compared the memory and time re-
quirement of different methods including the conventional LM
algorithm and proposed BSMC method with PCG. A final summary
of this work is given in the last section.

2. Related works

LM algorithm has been well studied for a long time. The
mathematic theory and equation derivation are well-defined. Re-
cently, the structure from motion is widely discussed in computer
vision community. Most of the researchers working on structure
from motion applied iterative methods to deal with bundle block
adjustment problems of large-scale data (Snavely et al., 2008; Jian
et al., 2011). The most famous and widely used method is PCG
which is an extension version of the CG algorithm. CG belongs to
the algorithms family called Krylov method (Saad, 1981). It mul-
tiplies the normal matrix and the residuals vector, forming a
Krylov subspace which is used to iteratively solve the normal
equations. It's been reported that the iteration times of con-
vergence is related to the condition number of the normal matrix.
Thus a PCG algorithm uses a preconditioner to decrease the con-
dition of the normal matrix, so as to improve the converging speed
(Byröd and Åström, 2010; Jian et al., 2011). A lot of works have
focused on how to choose a proper preconditioner. Some efficient

and stable preconditioners have been introduced, such as Jacobi
preconditioner (Agarwal et al., 2010, 2011) (Byröd and Åström,
2010; Jian et al., 2011), Symmetric Successive Over-relaxation
(SSOR) preconditioner (Byröd and Åström, 2010; Jian et al., 2011),
QR factorization preconditioner (Byröd and Åström, 2010), Ba-
lanced Incomplete Factorization based preconditioner (Bru et al.,
2008), multiscale preconditioner (Byröd and Åström, 2009), sub-
graph preconditioner (Jian et al., 2011) and so on. Among the
above preconditioners, Jacobi is simplest and most widely used in
the real case. Iterative methods can be also explored in remote
sensing community since more and more large-scale remote
sensing data have emerged, such as UAV images, Oblique images,
and mobile phone images even internet images. When the images
increased to a certain large number, the conventional LM method
is no longer suitable for solving such big normal equations. Then,
the iterative method is considered to be a necessary alternative.

Matrix-vector product is the most frequently computed pro-
cedure in the PCG iteration. The multiplications of normal matrix
and residuals vector need to be calculated during each iteration of
PCG. It means that the normal matrix will be frequently read and
used during each iteration of PCG. Thus it has to be stored what-
ever in RAM or external memory. Some methods use mathematic
trick to avoid storing the normal matrix (Agarwal et al., 2010;
Byröd and Åström, 2010). However, this will take even more
computational cost which will largely slow down the iteration
speed. But to store the whole normal equation will need a very
large memory space especially for the large-scale data. So the
normal matrix should be compressed. As mentioned before, the
normal matrix is often sparse and includes a lot of zero elements.
Only non-zero elements and their position indexes in the sparse
matrix need be stored. A famous and widely used normal matrix
compression method is called CSR. This method only needs three
one dimensional data arrays to store the non-zero elements and
their position indexes while abandoning all the zero elements (Bell
and Garland, 2009). But we found in practice that this storage
method is not suitable for the normal matrix update. So the BSMC
method is introduced to decrease its memory requirement while
making the normal matrix easy to be updated.

3. Methodology

3.1. Imaging geometry

A ground point P(X, Y, Z) is imaged by a camera with para-
meters (Xs, Ys, Zs, phi, omega, kappa) known as Exterior Orienta-
tion Parameters (EOPs) and (f, x0, y0, k1, k2) known as Interior
Orientation Parameters (IOPs). Then an image point p(x, y) corre-
sponding to the ground point P can be obtained in the image as
shown in Fig. 1. The camera lens center is defined as the per-
spective center S. The ground point P, it's corresponding image
point p and the perspective center S is on a line, the relationship
can be described by formulae as Eqs. (1), (2), (3) and (4).
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where R is a rotation matrix consisting of three rotation angles:
phi, omega, and kappa. Δx, Δy is the correction terms for image
point coordinates.
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