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a b s t r a c t 

We examine the performance of Kalman filter techniques in forecasting volatility. We find 

that the simple implementation of an online Kalman filtering procedure that combines 

commonly used forecasting models with market-based estimates improves the accuracy 

of volatility forecasts. Furthermore, we demonstrate that the Interacting Multiple Model 

algorithm, which combines multiple Kalman filters, provides the most accurate volatility 

forecasts overall. 

© 2016 Published by Elsevier Inc. 

1. Introduction 

The past two decades have spawned vast literature on volatility estimation and forecasting, ranging from time series 

models to market-based estimates implied from options. However, with such a large range of estimation techniques at 

their fingertips, academics and practitioners alike are often overwhelmed by the paradox of choice. Given the potentially 

incorrect assumptions regarding volatility dynamics in model-based estimates ( Nelson, 1992; Nelson and Foster, 1995 ) and 

trading noise and market irrationalities in aggregate market-based estimates ( Hentschel, 2003 ), practitioners increasingly 

combine forecasts to improve the accuracy of predictions (see, for example, Timmermann, 2006 ). However, frequently the 

forecast weighting algorithms are chosen arbitrarily and lack optimality and sophistication. 

The problem of multiple model estimation has been addressed in other fields through the use of online, or real-time, 

Kalman filtering. The Kalman (1960) filter optimally combines multiple model estimates to produce forecasts with lower 

errors than the two constituent estimates. While commonly applied to solve control engineering problems, most notably 

object tracking, the application of online Kalman filtering to financial data remains relatively unexplored. In contrast to 

engineering, where systems are generally deterministic, in financial and econometric applications, parameter specifications 

are not necessarily known ( Harvey, 1989 ; Wells, 1996 ). Consequently, the financial literature has evolved mainly around 

quasi-maximum likelihood parameter estimation where the filter is effectively reverse engineered using a set of actual data 

to uncover the system matrices. This model fitting application has been demonstrated in a wide range of studies, including 

the estimation of Stochastic Volatility Models ( Hwang and Satchell, 20 0 0 ; Jacquier et al., 1994 ), beta ( Wells, 1996; Choudhry 

and Wu, 2008 ), Australian interest rates ( Bhar, 1996 ) and the currencies of emerging markets ( Wang and Wong, 1997 ). 
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However, the Kalman filter is more powerful than a simple model fitting tool. We follow the work of Athans (1974) and 

combine model and market-based volatility estimates using the online filtering algorithm to increase the overall precision 

of forecasts. Although the Kalman filter can only combine a single model with a single sensor estimate the development of 

multiple model adaptive estimation (MMAE) techniques such as Bayesian switching, as outlined in ( Simon, 2006 ), and more 

complex Interacting Multiple Model (IMM) methods, as presented in Li (1992) and Sworder and Boyd (1999) can employ 

banks of Kalman filters in parallel, each running a different model which are then fused to obtain a more accurate estimate 

of volatility. The IMM Kalman filter allows volatility dynamics to be represented by a number of models and thus provides 

a powerful framework for the estimation of volatility that transitions between a set of dynamics. 

The closest relative of the broader multiple model class of estimation methods in finance is the dynamic Markov regime 

switching models introduced by Hamilton (1989) . The Markov regime switching involves swapping out parameters within a 

model based on different sample periods. However, based on the presentation in Kim and Nelson (1999) , the model itself 

remains the same across all regimes. As such the behavioural assumptions regarding the dynamics of the model are held 

through the regime switch. This is in direct contrast to the broader MMAE methods which allow multiple models with 

differing dynamics to compete. These types of Markov regime switching models have been used to describe stock returns 

( Schaller and Van Norden, 1997 ), option pricing ( Bollen, 1998 ; Buffington and Elliott, 2002 ), long run volatility estimation 

( Calvet and Fisher, 2004 ) and even probabilities of financial crises ( Coe, 2002 ). 

2. Methodology and data 

2.1. The Kalman filter implementation 

The Kalman filter addresses the general problem of trying to estimate the state of a discrete-time controlled process that 

is governed by the linear stochastic difference equation 

x t = A x t−1 + B u t−1 + ε t−1 , ε t−1 ∼ N ( 0 , Q ) (1) 

with a measurement equation 

y t = C x t + ηt , ηt ∼ N ( 0 , R ) (2) 

where A, B and C are the state transition, control and observation matrix, respectively. ε t −1 and ηt are random variables 

representing the process and measurement noise, respectively, assumed to be independent of each other with Gaussian 

white processes. 1 

To apply the Kalman filter we express the underlying volatility processes in linear state-space form. In our model, the 

state vector x t represents the daily variance rate and y t provides direct observation of the market-based volatility estimate 

implied from the options market (IVOL). The process noise ε t −1 reflects the model error while the sensor noise ηt reflects 

trading noise in the options market. The model error and the trading noise covariance matrix are given by Q and R , respec- 

tively. For consistency, we fix R across all Kalman filters to the variance of the IVOL series. In multi-state systems we assume 

an equal process noise variance across all states and independence across the error terms. 

2.2. Interacting Multiple Model (IMM) estimator 

The IMM algorithm is a technique for combining the output estimates from multiple Kalman filters in parallel with each 

filter describing a different dynamic model of volatility. The estimation algorithm can be separated into four steps. 2 In the 

first step, the state estimate and covariance for each model from the previous cycle are mixed using a set of conditional 

model probabilities computed from the previous update. These mixed state x̄ (i ) 
t −1 | t −1 

, and covariance P̄ (i ) 
t −1 | t −1 

, estimates are 

the inputs of the Kalman filter at time t as they provide the best possible estimate of all information at time t . 

x̄ ( 
i ) 

t −1 | t −1 
= 

∑ 

j 

ˆ x ( 
j ) 

t −1 | t −1 
μ j| i 

t−1 
(3) 

P̄ ( 
i ) 

t −1 | t −1 
= 

∑ 

j 

[
P ( 

j ) 
t −1 | t −1 

+ 

(
x̄ ( 

i ) 
t −1 | t −1 

− ˆ x ( 
j ) 

t −1 | t −1 

)(
x̄ ( 

i ) 
t −1 | t −1 

− ˆ x ( 
j ) 

t −1 | t −1 

)T 
]
μ j| i 

t−1 
(4) 

where ˆ x 
( j) 
t −1 | t −1 

and P 
( j) 
t −1 | t −1 

are the updated state and covariance, respectively, from the j th Kalman filter from the previous 

time step ( t-1 ). The conditional probability of the volatility in the i th model state, which transited from the j th model state 

μ j| i 
t−1 

is given by 
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π ji μ
( j ) 
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(5) 

1 Several pieces of literature provide a thorough derivation of the Kalman filter and describe its optimality in linear systems. A particularly simple and 

intuitive outline of the algorithm is provided by ( Welch & Bishop, 2006 ). 
2 For a full derivation of the IMM estimator see Li (1992) . 
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