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a b s t r a c t

The paper presents the spatial Markov Chains (spMC) R-package and a case study of subsoil simulation/
prediction located in a plain site of Northeastern Italy. spMC is a quite complete collection of advanced
methods for data inspection, besides spMC implements Markov Chain models to estimate experimental
transition probabilities of categorical lithological data. Furthermore, simulation methods based on most
known prediction methods (as indicator Kriging and CoKriging) were implemented in spMC package.
Moreover, other more advanced methods are available for simulations, e.g. path methods and Bayesian
procedures, that exploit the maximum entropy. Since the spMC package was developed for intensive
geostatistical computations, part of the code is implemented for parallel computations via the OpenMP
constructs. A final analysis of this computational efficiency compares the simulation/prediction algo-
rithms by using different numbers of CPU cores, and considering the example data set of the case study
included in the package.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The paper aims to introduce the spMC package (Sartore, 2013)
which is an extension package for the R software (R Core Team,
2016). Its main purpose is to provide recent tools for the analysis,
simulation and prediction of lithological data under the metho-
dological framework of the spatial Markov chains. The first soft-
ware implementation of lithological simulation and prediction for
spatial Markov chains, stemming from the seminal work of Carle
and Fogg (1996, 1997); Carle et al. (1998); Weissmann et al. (1999),
and Weissmann and Fogg (1999), was the geostatistical software
T-PROGS (Carle, 1999). This software is a well-established sto-
chastic modeling tool for 3-D applications and also embedded in
some commercial groundwater modeling software (e.g. GMS,
(Aquaveo, 2015)). In T-PROGS transition probabilities are estimated
for describing the stratigraphical characteristics of the geological
data. Then simulations are performed through CoKriging and si-
mulated annealing methods. The spMC package in its present
version is a complete collection of advanced methods for data
inspection, statistical estimation of parameter models, and litho-
logical simulation and prediction. It includes common tools for
predicting and simulating lithofacies at pixel level which are

typically used like sequential indicator simulation (SISIM, (Deutsch
and Journel, 1998)) as well as the more recent advances (Li, 2007;
Allard et al., 2011). We think there are three features of spMC that
can be of value in the geostatistical community. First, it is an ex-
tension package of an increasingly used software like R. Second, a
particular strength of the package is the exploitation of high per-
formance computational (HPC) techniques, such as parallel com-
puting, by allowing to deal better with a large number of cate-
gories. Finally, we can find the implementation of the more recent
advances in simulation of lithological data. In the next section we
briefly recall the methodological framework. In Section 3 we il-
lustrate the main features of spMC by examining a case study
(Section 4). Concluding remarks are addressed in Section 5.

2. Background on spatial Markov chain in geostatistics

The spMC package provides several functions to deal with ca-
tegorical spatial data and continuous lag Markov chain, where the
lag is the difference between two spatial positions. Traditionally, a
Markov chain is described by a probabilistic temporal model for
one-dimensional discrete lags, i.e. the model quantifies the prob-
ability to observe any specific state in the future given the
knowledge of the current state. The extension of this concept
arises by the definition of a Markov process involving continuous
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multidimensional lags in a d dimensional space.
We consider the stationary transition probability between two

states (or categories), i and j, in two locations, s and +s h, namely

( ) = ( ( + ) = | ( ) = ) ∀ = …t Z j Z i i j Kh s h sPr , , 1, , ,ij

where K is the total number of states that the random variable Z
can assume as outcome and h is a multidimensional lag of di-
mension. In continuous-lag formulation of a Markov chain model
(Carle and Fogg, 1997) the transition probability ( )t hij is the ele-
ment in the i-th row and in the j-th column of the matrix ( )T h such
that

( ) = (∥ ∥ ) ( )T h h Rexp . 1h

The transition rate matrix Rh depends on the direction given by
the lag h.

Carle and Fogg (1997) introduced an approximation of the rate
matrix Rh by the ellipsoidal interpolation which makes the rate
matrix for the direction of h dependent on the rate matrices Rek

estimated for the main axial directions. The vector ek indicates the
standard basis vector of dimension d, whose k-th component is
one and the others are zero. In particular, the matrix Rek can be
computed as

= (ℓ ) −− ⎡⎣ ⎤⎦R F Idiag ,e e e
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or for the reversibility of the chain as
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where ℓek is the mean vector of the stratum thicknesses/lengths
along the direction ek, the matrix Fek denotes the transition
probabilities for consecutive blocks made of adjacent points with
the same category, I is the identity matrix, and p is the vector of
relative frequencies corresponding to the estimate of the sta-
tionary distribution.

The rate rij h, in the i-th row and j-th column of the matrix Rh is
then calculated as
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where rij h, is non-positive when i¼ j, otherwise it is non-negative;
d represents the dimension of the lag h (and hence the number of
coordinates of s), and rij e, k denotes the components in the i-th row
and j-th column of the matrix Rek.

From a statistical viewpoint, two problems arise. The former is
related to how to estimate the components rij h, , while the latter is
associated to the formulation of the conditional probability used
for simulations and predictions.

spMC provides a variety of estimation methods. We im-
plemented the mean length method and the maximum entropy
method suggested in Carle and Fogg (1997) and Carle (1999).
These methods are both based on the mean lengths Li e, k and the
transition probabilities of embedded occurrences *f ij e, k

, which are
the components of the matrix Fek. The autotransition rates are
derived by = −r L1/ii ie e, ,k k, while the other rates are calculated as

= *r f L/ij ij ie e e, , ,k k k, i.e. for any ≠i j. The mean lengths are usually
computed by means of the average of the observed stratum
thicknesses/lengths, while the transition probabilities of em-
bedded occurrences are estimated as the average of the relative
transition frequencies, or through an iterative procedure based on
the entropy (Goodman, 1968).

A maximum likelihood method is implemented in which we
consider the stratum thicknesses/lengths distributed as log-nor-
mal random variables (Ritzi, 2000). There also exist robust alter-
natives for estimating the mean lengths which are based on the
trimmed median and the trimmed average.

Finally, we have considered a least squares approach in which
we minimize the sum of the squared discrepancies between the
empirical transition probabilities and theoretical probabilities gi-
ven by the model (1). Such minimization is performed under the
constraints (Carle and Fogg, 1997):
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where pi denotes the i-th component of the vector p.
In order to perform lithological simulations and predictions, an

approximation of the following conditional probability must be
considered:
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where s0 denotes a simulation or prediction location, sl represents
the l-th spatial position which corresponds to the l-th observation,
and ( )z sl indicates the observed value of the random variable ( )Z sl .
The approximation proposed by Carle and Fogg (1996) is based on
indicator Kriging and CoKriging methods, which are then adjusted
by a quenching procedure based on the simulated annealing
method. Other approximations are based on path methods (Li,
2007; Li and Zhang, 2007), while those that are based on the
Bayesian entropy perspective (Christakos, 1990) were considered
by Bogaert (2002) and modified by Allard et al. (2011).

The Kriging approximations are calculated through a linear
combination of weights, i.e.
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and the weight wij l, is the component in the i-th row and j-th
column of the matrix Wl; such weights are calculated by solving
the following system of linear equations:
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This system of equations, which can also lead to the CoKriging
equations, is singular. However, it can be solved through the
constraints proposed by Carle and Fogg (1996).

In order to obviate axiomatic problems arising from the Kriging
approximation, the path methods (Li, 2007; Li and Zhang, 2007)
considered the following approximation under the assumption of
conditional independence:
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These methods are characterized by following a fixed or random
path of unknown points, which are predicted or simulated by
conditioning on the of the previous prediction point.

Other approximations were proposed in order to improve the
Kriging deficiencies. In particular, Bogaert (2002) introduced a
Bayesian procedure exploiting the maximum entropy, which was
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