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a b s t r a c t

New measuring instruments of Earth's gravity gradient tensors (GGT) have offered a fresh impetus to
gravimetry and its application in subsurface exploration. Several efforts have been made to provide a
thorough understanding of the complex properties of the gravity gradient tensor and its mathematical
formulations to compute GGT. However, there is not much open source software available. Under-
standing of the tensor properties leads to important guidelines in the development of real three di-
mensional geological models. We present a MATLAB computational algorithm to calculate the gravity
field and full gravity gradient tensor for an undulated surface followed by regular geometries like an
infinite horizontal slab, a vertical sheet, a solid sphere, a vertical cylinder, a normal fault model and a
rectangular lamina or conglomerations of such bodies and the results are compared with responses using
professional software based on different computational schemes. Real subsurface geometries of complex
geological structures of interest are approximated through arrangements of vertical rectangular laminas.
The geological application of this algorithm is demonstrated over a horst-type structure of Oklahoma
Aulacogen, USA and Vredefort Dome, South Africa, where measured GGT data are available.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Earth's gravity and gravity gradient anomalies provide
important information for delineating geological structures of
economic importance. The gravity gradient method is one of the
geophysical tools used successfully to detect remote occurrences
of target bodies and to define geological models with enhanced
resolution. It is frequently employed in interpretation for isolating
gravity anomalies (Murphy and Dickinson, 2009). The use of the
gravity gradient in exploration is becoming more common in re-
cent years due to the development of airborne gradiometry with
an accuracy of �2–5 eötvos unit (1E¼0.1 mGal/km) over wave-
lengths of �45 m (Dransfield and Christensen, 2013; Zuidweg and
Mumaw, 2007) or �100 km for the ongoing gradiometer satellite
mission called GOCE (Herceg et al., 2014; Godah and Krynski,
2011), which can give a potential map easily over large, highly
inaccessible undulating regions. Gravity gradiometers measure
gradients of the gravity vector components in three Cartesian di-
rections (Fig. 1) and measured components are used to produce
the nine – component tensor, Tij. Since the gravitational potential
satisfies Laplace's equation, the trace of the symmetric tensor is
equal to zero. Thus, there are only five independent elements (e.g.,

Txx, Txy, Txz, Tyy, and Tyz) as Tij¼Tji, where i≠j. Furthermore, the Tzz
component is often displayed as it closely relates to the subsurface
geology (Pedersen and Rasmussen, 1990).

Conventional gravity data show the strength of the earth's
gravity field but are less sensitive to the edges of bodies and
contain no directional information. In contrast, gravity gradients
directly recover sharp signal over the edges of structures and are
closely related to the edges, corners, and center of mass of the
causative bodies producing complex pattern of anomalies. For a
simple positive density cube, a classic gravity map would show a
diffused circular anomaly centered over the body. In contrast, the
six gravity gradients provide a powerful tool for delineating the
shape of the body (Saad, 2006). The vertical tensor component Tzz
provides an estimate of maximum depth and predicts boundary
information directly related to the geological body and the other
components give close information related to the geometry of the
body. The Txx component effectively indicates the eastern and
western edges of a feature, whereas the Tyy component indicates
the northern and southern edges. The Txz component divides the
body into eastern and western halves approximately symme-
trically and gives the central anomaly axis towards north–south
direction; similarly Tyz component divides the body into northern
and southern halves symmetrically and gives the central anomaly
axis towards east–west direction. It also helps to show north–
south and east–west trending edges. The Txy component gives
information about the four corners of near rectangular bodies and
locates the center point of symmetrical bodies in case of alignment
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of geological body with x and y directions.

2. Commutating gravity and its gradients for geological
structures

In particular, gravity and gravity gradient data explore the
subsurface geology originating from mass distribution in subsur-
face. Therefore, estimating the model parameters of causative
sources such as location, depth, thickness, size, shape, extension,
density variations etc., has a key importance in the interpretation
stage. However the well-known complex nature of the full gravity
gradient tensor (FTG) may quite complicate the interpretation
procedure compare to the gravity alone (Saad, 2006). Therefore,
for better understanding of the complex nature of FTG, it is
thought to provide a detail discussion on computational algo-
rithms of three dimensional regular shaped geometries and their
behavior for the gravity field and their gradient components due
to various geometrical shapes. Several researchers have proposed
modeling approaches for computation of gravity and gravity gra-
dient responses due to homogeneous polyhedral bodies (Okabe,
1979; Gotze and Lahmeyer, 1988; Barnet, 1976; Coggon, 1976;
Pohánka, 1988; Yao and Changli, 2007). Bhattacharya (1964), Nagy
(1966), and Plouff (1976) presented closed form mathematical
equations for prism shaped bodies, whereas Talwani and Ewing
(1960) and Talwani (1965) used numerical integration techniques
for the computation of the fields due to models of arbitrary shape
by dividing them into polygonal prisms or laminae. Some recent
studies (e.g. Tsoulis, 2012) provided a mathematical formulation
for computation of the full gravity gradient tensor from a poly-
hedral source. The present study utilizes theory of gravity and
gravity gradient effects of a rectangular prism or rectangular la-
mina (Talwani, 2011) and presents MATLAB algorithms for the
computation of the primary gravity field and their derivatives to
each coordinate direction for regular shaped geometries like the
rectangular prism, dipping fault, spherical body, vertical cylinder
body and two dimensional geometries like the semi-infinite hor-
izontal slab, and dike, all of uniform density.

2.1. Computations for regular geometries

Many geological features are approximated by 2D models like
an infinite dike or a geological contact for computational simpli-
fications. The interpretation of 2D and 2.5D potential field models
is simple but might be far from reality since the real geological
bodies are mostly three dimensional structures. Following sections
discusses both two dimensional and three dimensional geometries
with an emphasis on the three dimensional regular shaped geo-
metries used in analyzing asymmetrical three dimensional ar-
rangements in the subsurface. Each of the geometrical bodies used
is of uniform density, although in many geological situations, the
density of a particular structure may vary. This is particularly true
in sedimentary rocks where the density increases with depth as a
result of compaction. Often, this may be allowed using simple
functional forms to approximate the density variation with depth
as well as its lateral variations. However, for the purpose of this
paper, the model assumes constant density for each element of a
model and variations in density are simulated by the use of se-
parate elements.

2.2. Geometries: semi-infinite horizontal slab and vertical sheet/dike

For many exploration purposes, it is common to assume that
the body producing a gravity anomaly is two dimensional in nat-
ure. In particular, the removal of one spatial dimension allows
greater complexity to be built into the remaining two dimensions
of the model as well as making the computation of the simulation
faster. Also mineralized zones are often found over linear features
like shear zones, faults and so on that can be approximated as two
directional features. The gravity gradients in the two-dimensional
case are quite simple, since the tensor has only four components
with the off-diagonal components equal by symmetry of the ten-
sor and the diagonal elements equal in magnitude but opposite in
sign (Dransfield, 1994). The potential at a point much closer to the
center of the elongated body than its end is independent of the
distance to the ends and therefore the components of gravity and
gravity gradients in that direction are zero.

Here, we present the gravity and horizontal gradient response
for two simple geometries: the semi-infinite horizontal sheet and
the vertical sheet (Fig. 2). Their analytical expressions are

Fig. 1. Schematic diagram showing the gravity field vector Gx, Gy, Gz and full gravity gradient tensor components Txx, Txy, Txz, Tyy, Tyz and Tzz.
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