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a b s t r a c t

The geological and metallogenic process is a typical non-stationary multifactor and multi-scale random
process. Multiple measurement data assess the performance of the integrated process, and the combined
data set is usually large and complex, among other characteristics. When different metallogenic pre-
diction targets exist, the data must be decomposed on different scales in space. The study of the scale
interval in which the object features are located can eliminate useless information and retrieve useful
scale data that are needed for metallogenic prediction. Thus, the model that the specific deposit presents
will be rapidly and accurately identified to enhance the efficiency of the prediction and analysis models.
This paper employs an improved bidimensional empirical decomposition method to decompose aero-
magnetic survey data and expresses and decomposes the spatial distribution of deposits with a mixed
Gaussian model. By comparing the decomposition results on various sampling data scales with the
distribution function for the deposit, the characteristic scale interval that contains the measurement
information that exhibits the greatest similarity to the distribution of the deposits can be identified. This
method was employed to analyse a Yunnan Gejiu tin–copper polymetallic deposit using aeromagnetic
sampling data to calculate suitable decomposition-scale parameters. This approach provides valuable
parameters for metallogenic prediction in other areas with aeromagnetic data.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Geological processes are typical, non-stationary and complex
temporal and spatially variable processes (Cheng, 2003; Turcotte,
1997; Bansal and Dimri, 2005a, 2005b, 2014). A basic task of
geological research is modelling this process to quantitatively and
accurately describe it. Due to the extreme complexity of the entire
process, reproduction of the whole geological process by estab-
lishing a single or several mathematical models is not feasible. A
feasible approach is to address subproblems and subprocesses in a
fractionised domain and to build a concrete model (Zhao, 1982,
2002; Zhao et al., 1994).

Geological data consists of measurement signals and a non-
stationary random process that are formed by the interaction of
various modulation mechanisms (Diks, 1999; Huang et al., 1996;
Widrow and Stearns, 1985). Scale decomposition and scale selec-
tion of geological signals are the primary focus of this paper.

The decomposition and reconstruction of signals are classic
problems. Frequency analysis tools and scale analysis tools can
completely expand the structures of a signal; depending on their

application, they can be employed for selecting and re-organising
information to obtain a new desired signal (Cheng, 2004). This
study employs the HHT as the analysis tool. The basic principle of
the HHT is to decompose a signal based on the symmetry of the
signal at each scale. Compositions that are decomposed from each
characteristic scale are referred to as the intrinsic mode function
(IMF). For each IMF, the Hilbert transform was employed and the
instantaneous frequency spectrum was calculated. Then, the in-
stantaneous spectrum of each component was combined, and in-
formation about the signal frequency structure was obtained.
Therefore, the HHT is an integrated decomposition tool in the
space-wavenumber domain (Kantz and Schreiber, 1997).

In recent years, there have been many applications of the HHT
transform in geosciences researches (Chen and Zhao, 2011, 2012;
Hou et al., 2012; Huang et al., 2010; Jian et al. 2012); however,
many researchers use it as a conventional decomposition tool for
sample data processing, obtaining features from various scales,
and using these characteristics as parameters or input in different
mathematical models. This is only a basic application of the HHT.
For the former applications of the HHT for geosciences data pro-
cessing is a simple signal decomposition, neither the frequency
decomposition mechanism of the BEMD is discussed, nor the self-
adaption of the signal analysis is made by the mechanisms, a
deeper understanding of the HHT, the analysis of its mathematical
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properties and how to more deeply and reasonably apply the
characteristics of the HHT in the geosciences are problems that
remain to be studied.

In this paper, the basic principles of the HHT (Han et al., 2002;
Huang, 2005, 2006) are described and its scale decomposition
function is analysed. The effective scale decomposition ability of
the HHT is employed to reduce a signal to an integrated multi-
scale channel and identify components that are closest to the
specific metallogenic mode at each scale, which is the scale in-
terval in which the specific metallogenic mechanism serves a role.
Once a scale parameter has been determined, it can be employed
as a reference for metallogenic prediction or ore-forming process
analyses in other locations, which is performed by directly ap-
plying the data within the decomposed characteristic scale to
predict the metallogenic process using pattern recognition or
feature comparison. Calculation and analysis based on decom-
position data in the characteristic scale interval produces not only
higher accuracy but also greater efficiency (Bedrosian, 1963;
Flandrin and Gonçalves, 2004; Flandrin et al., 2004, 2005; Huang,
2001; Huang et al., 1998; Bendat, 1990).

2. HHT Analysis

The HHT method is a time-domain decomposition and fre-
quency spectrum analysis method that was proposed at the end of
the 1990s. It has the characteristics of simple calculation, strong
adaptability, instantaneous spectrum structure and strong ro-
bustness. It is a new signal processing mode of decomposition and
a breakthrough of various types of analysis tools based on the
Fourier transform.

The HHT method employs a multi-scale analysis framework
that is similar to the wavelet analysis (Schlurmann, 2002); how-
ever, it does not consider the signal frequency as the basic object of
calculation. Its scale decomposition object is the symmetry of the
vibration on the time domain. This change abandons the con-
volution calculation, which is generally adopted by the Fourier
transform and wavelet analysis; it prevents the poor adaptability
that is caused by the pre-setting convolution kernel and is more
flexible and stable. Correspondingly, the disadvantage of this de-
composition is that does not have a clear boundary in the fre-
quency domain. For many applications, the scale analysis is more
important than the frequency analysis; thus, the HHT becomes
very suitable for these cases. For example, a substantial amount of
geological data that corresponds to the stochastic processes are
very suitable via use of the HHT. The majority of geological signals
are complex, are composed of a plurality of spectrum types, are
non-stationary and nonlinear (Tong, 1990; Wu et al., 2007), and
are combined with many local time variation processes. Use of a
highly adaptive and multiscale analysis tool, such as the HHT,
which is directly based on the spatial form, to decompose signals
with these characteristics is more suitable.

Numerous studies have applied HHT analysis to geoscience
problems (Coughlin and Tung, 2004; Coughlin and Tung, 2005;
Datig and Schlurmann, 2004; Duffy, 2004; Han et al., 2002; Huang
and Attoh-Okine, 2005; Huang and Shen, 2005; Huang et al., 2001;
Komm et al., 2001; Nuttall, 1966; Schlurmann, 2002; Zhang, 2006).

The HHT involves two parts: the first part is an iterative sifting
process, in which an original signal is decomposed into a trend
term and a plurality of the component function, which is referred
to as an intrinsic mode function (IMF) (Wu and Huang, 2005). Each
IMF has the characteristics of an approximate zero mean and en-
velope symmetry. This decomposition process is known as em-
pirical mode decomposition (EMD). The second part uses the
Hilbert transform to decompose the instantaneous frequency for
each IMF to obtain instantaneous spectra of the decomposed

signal (Chen et al., 2006; Huang et al., 2008). As the EMD algo-
rithm guarantees the symmetry of each IMF signal and the zero
mean characteristics, the IMF is very suitable for the Hilbert
transform; some common defects of the Hilbert transform would
not appear. These two parts are combined to constitute the HHT, in
which the function of the first part is the scale decomposition and
the role of the second part is the frequency analysis.

2.1. EMD decomposition

First, we discuss empirical mode decomposition. The decom-
position rules of EMD imply some assumptions and property re-
quirements of the HHT for signals: (1) the signal should be a
concussion signal, in which minimum and maximum values can be
applied to the decomposition procedure, and signals usually have
multiple concussion periods, so that the analysis has practical
significance; (2) the time interval between the extreme points and
the amplitude of the vibration are important scale characteristics
of the signal; however, the IMF enables variation in the two
characteristic scales. A relatively stable characteristic scale in-
dicates the high probability of a single vibration source; and (3) if
the signal data have no extreme points but have inflection points,
an extreme point can be obtained by differentiating the signal data
and integrating it to obtain the decomposition results (Xu et al.,
2006).

For the original signal ( )f x y, , the specific sifting process of the
EMD method is as follows: first, initialise the residual fun-
ction ( )res x y, and the current step signal ( )f x y,0 . Let

( ) = ( ) = ( )res x y f x y f x y, , ,0 . Second, calculate all extreme points of
the current signal ( )f x y,0 : employ a double three-spline inter-
polation function to calculate the upper envelope ( )up x y, of all
local maximum points and employ this same method to obtain the
lower envelope ( )low x y, of all local minimum points. Third, obtain
the average surface ( ) = ( + )mean x y up low, /2 of the two envel-
opes. The mean represents the development trend of the
data. Fourth, the trend from the original signal. Let the remai-
ning part be the signal of the next step, that is,

( ) = ( ) − ( )f x y f x y mean x y, , ,1 0 . Last, determine the relationship
between the current step signal f1 and the previous step signal f0
by placing them into the stop condition. If the stop condition is not
satisfied, repeat this fitting and subtracting of mean processes to
obtain f f,2 3,... until the stop condition is satisfied. The stop criter-
ion serves a critical role in BEMD; it determines the scale, which
resembles a frequency band, for which the current pass of de-
composition generates relatively stable components. Additional
levels are obtained for smaller thresholds. Let the current step
signal be fn. Then, fn is the minimum scale IMF of the first layer
that is sifted, which is denoted as imf1. Remove the decomposed
intrinsic mode function imf1 from the original signal and re-in-
itialise the remaining part as a new residual function and a current
step signal, i.e., ( ) = ( ) = ( ) −res x y f x y f x y imf, , ,0 1. Repeat this sift-
ing process for IMF2, IMF3,…, and the final residual function

( ) = ( ) = ( ) −res x y f x y f x y imf, , ,0 1 is obtained. Their relationship is

∑( ) = ( ) + ( )
=

f x y imf x y res x y, , , .
i

n

i
1

A flow chart of the EMD decomposition process is shown in
Fig. 1.

2.2. Hilbert Transform

Consider a one-dimensional function as an example to in-
troduce the Hilbert transform, which analyses the instantaneous
frequency of the decomposed IMFs. Let the original signal be ( )x t .
The Hilbert transform is the convolution of the signal and π( )−t 1:
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