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a b s t r a c t

In this paper, we aim to find a time-consistent open-loop equilibrium strategy for the asset–liability
management problem under mean–variance criterion. The financial market consists of a bank account
and m stocks whose prices are modeled by geometric Brownian motions. The liability of the investor
is uncontrollable and modeled by another geometric Brownian motion which is correlated to the stock
prices. First, we provide a sufficient condition for the equilibrium strategy, which involves a system of
FBSDEs. Second, by solving these FBSDEs, we obtain an equilibrium strategy in a linear feedback form of
the surplus and the liability. Finally, we consider a Markovian case where the interest rate is given by the
Vasiček model.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The pioneer work of Markowitz (1952) studies the portfolio se-
lection under thewell-knownmean–variance criterion andderives
the analytical expression of themean–variance efficient frontier in
the single-period model. This seminal work has become the foun-
dation of modern portfolio theory and has stimulated numerous
extensions.

On the one hand, some researchers focus on studying the
dynamic mean–variance portfolio selection problem. Samuelson
(1969) considers a discrete-time multi-period model. More re-
cently, by embedding the original problem into a stochastic linear–
quadratic (LQ) control problem, Li and Ng (2000) and Zhou and
Li (2000) extend Markowitz’s work to a multi-period model and
a continuous-time model, respectively. Lim (2004) studies the
quadratic hedging and mean–variance portfolio selection in an
incomplete market. On the other hand, there are some works that
consider a generalized financial market. An important and popular
subject is the asset and liability management problem, which is
concernedwith the selection of portfoliowhile taking the liabilities
of investors into account. More specifically, the surplus defined as
the difference between the asset and liability is considered in the
asset and liability management problem.

Since it was proposed by Sharpe and Tint (1990) in a single-
period model, there is an increasing number of interests in the
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asset–liability management (ALM, for short) under the mean–
variance criteria. Keel and Müller (1995) studies the portfolio
choice with liabilities, and shows that liabilities affect the efficient
frontier. By the embedding technique of Li and Ng (2000), Leip-
pold et al. (2004) derive an analytical optimal policy and efficient
frontier for the multi-period ALM problem. The mean–variance
ALM in a continuous-time model is investigated by Chiu and Li
(2006) from the view of stochastic LQ control problem, where
both the optimal strategy and the efficient frontier are obtained.
Furthermore, in a regime-switching framework, Chen et al. (2008)
and Chen and Yang (2011) investigate the mean–variance ALM in
the continuous-time model and multi-period model, respectively.
All of these papers assume that the liabilities are not controllable,
which is the main difference between the Markowitz’s problem
and the ALM.

It is well acknowledged that due to the existence of a non-linear
function of the expectation in the objective functional, the dynamic
mean–variance portfolio selection problem is time inconsistent in
the sense that the Bellman optimality principle does not hold. Intu-
itively, the optimal strategy obtained for the initial timemay not be
optimal for some latter time. This is the so-called pre-committed
strategywhich is only optimal for the initial time. Observe that only
pre-committed strategies are considered in all the aforementioned
references.

Strotz (1955) first studies the time-inconsistent problem by the
game theoretic approach. More specifically, Strotz views the time
inconsistent problem as a non-cooperative game, in which there
is a player at each time t (the player can be viewed as the future
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incarnation of the decision-maker at time t). Then he seeks a sub-
game perfect Nash equilibrium strategy which is time-consistent.
Recently, there is an increasing amount of attentions in the time in-
consistent control problem due to the practical applications in the
economics and finance. In Ekeland and Lazrak (2006) and Ekeland
and Pirvu (2008) which consider the optimal consumption and
investment problemswith hyperbolic discounting, the precise def-
inition of the equilibrium solution in continuous time is introduced
for the first time. Following their ideas, Björk and Murgoci (2010)
investigate a class of time-inconsistent control problem in a gen-
eral Markovian framework. They derive a system of extended HJB
equation and prove the associated verification theorem. Björk et
al. (2014) studies the Markowitz’s problem with state-dependent
risk aversion by the extended HJB equation approach and shows
that the equilibrium control is dependent on the current state.
Wei et al. (2013) considers a regime-switching model with state
dependent risk aversion and obtains the equilibrium strategy for
the mean–variance asset–liability management problem by the
previous extended HJB equation as well.

In Ekeland and Lazrak (2006), Ekeland and Pirvu (2008) and
following-up papers, the equilibrium control is defined within the
class of closed-loop (i.e. feedback) controls. In the particular LQ
framework, Hu et al. (2012) defines the equilibrium control within
the class of open-loop controls and derives a general sufficient
condition for equilibriums through a system of forward–backward
stochastic differential equations (FBSDEs). As an application, they
deal with the Markowitz’s problem with state-dependent risk
aversion and random coefficients. However, the interest rate in
their model is assumed to be deterministic. More recently, Hu
et al. (2015) continues to discuss the uniqueness of open-loop
equilibrium strategies. At this moment, it is worthy of mentioning
the work of Yong (2015), where both the open-loop and close-loop
equilibrium strategies of linear–quadratic optimal control prob-
lems for mean-field stochastic differential equations are studied.

In this paper, we study the mean–variance ALM problem in
continuous-time setting. Similar to Hu et al. (2012), our object
is to find open-loop equilibrium strategy as well. To capture the
fluctuations of the parameters of the financial market and the
liability in the long-term portfolio selection problem, we allow all
the parameters (including the interest rate) to be random. First, we
establish a sufficient condition of equilibrium strategy via a system
of FBSDEs. Themethod of the proof is different from that inHu et al.
(2012). Second, by introducing a series of backward stochastic dif-
ferential equations (BSDEs), we construct a solution to the previous
system of FBSDEs and a strategy in linear feedback form of surplus
and liability. Under a technical condition (see Proposition 3.9), we
verify that the strategy is indeed an equilibrium strategy for the
mean–variance ALM problem. Finally, we consider a Markovian
case where the interest rate is given by the Vasiček model. In this
case, by solving a series of partial differential equations (PDEs),
we obtain an equilibrium strategy and the corresponding efficient
frontier in the closed-form. Some comparisons between the open-
loop and closed-loop equilibrium strategies are given. It is shown
that the randomness of the interest rate leads to differences be-
tween these two kinds of strategies. We also present a numerical
example to show how the volatility of the interest rate affects the
efficient frontier in the case without liability.

The remainder of this paper is organized as follows. In Section 2,
we give the formulation of the mean–variance ALM problem and
introduce the definition of the equilibrium strategy. In Section 3,
we present a sufficient condition for equilibrium strategy, and then
give an equilibrium strategy and the corresponding value function.
In Section 4,we study an examplewith Vasiček interest ratemodel.
Section 5 concludes the paper. In the Appendices we collect some
lengthy proofs.

2. The model

Let (Ω,F, P) be a fixed complete probability space on
which an m-dimensional standard Brownian motion W (·) ≡

(W1(·), . . . ,Wm(·))⊤ and an n-dimensional Brownian motion
B(·) ≡ (B1(·), . . . , Bn(·))⊤are defined. Let T > 0 be the fixed and
finite time horizon, F := {Ft}t∈[0,T ] be the augmented filtration
generated by (W (·),B(·)) and FW

:=
{
FW

t

}
t∈[0,T ]

be the aug-
mented filtration generated by W (·). We shall use W (·) and B(·),
which are assumed to be independent of each other, to describe
the risks of the financial market and the other risks faced by
the investor (e.g., the claim risks, if the investor is an insurer),
respectively.

For p ≥ 1, H := Rn,Rn×m, etc. and 0 ≤ s ≤ t ≤ T , we define

LpFt (Ω;H) :=

{
X : Ω → H

⏐⏐⏐ X(·) is Ft-measurable,

E
[
|X |

p] < ∞

}
,

LpF (s, t;H) :=

{
X : [s, t] × Ω → H

⏐⏐⏐ X(·) is F-adapted,

E

[∫ t

s
|X(v)|pdv

]
< ∞

}
,

LpF
(
Ω; L2(s, t;H)

)
:=

{
X : [s, t] × Ω → H

⏐⏐⏐ X(·) is F-adapted,

E

[(∫ t

s
|X(v)|2dv

)p]
< ∞

}
,

LpF(Ω; C([s, t];H)) :=

{
X : [s, t] × Ω → H

⏐⏐ X(·) is F-adapted,

has continuous paths,

and E

[
sup

v∈[s,t]
|X(v)|p

]
< ∞

}
.

In what follows, unless specified otherwise, we adopt bold-
face letters to denote matrices and vectors, and the transpose of a
matrix or vectorM is denoted byM⊤. Also, we denote byMij (resp.
Mi) the (i, j)-element (resp. the ith element) of the matrix (resp.
vector) M .

We consider a financialmarket consisting of a bank account and
m stocks within the time horizon [0, T ]. The bank account S0(·) is
governed by{
dS0(s) = r(s)S0(s)ds, s ∈ [0, T ],

S0(0) = s0 > 0, (2.1)

where r(·) > 0 is the interest rate. For i = 1, 2, . . . ,m, the price of
the ith stock Si(·) is given by⎧⎪⎪⎨⎪⎪⎩

dSi(s) = Si(s)

⎡⎣µi(s)ds +

m∑
j=1

σij(s)dWj(s)

⎤⎦ , s ∈ [0, T ],

Si(0) = si > 0,

(2.2)

where µi(·) is the expected return rate of the ith risky as-
set and σij(·) is the corresponding volatility rate. In the follow-
ing, r(·) is a bounded continuous FW -adapted process, µ(·) :=

(µ1(·), . . . , µm(·))⊤ and σ(·) := (σij(·))1≤i,j≤m are bounded continu-
ous F-adapted processes such thatµi(·) > r(·), σ(·)σ⊤(·) ≥ δIm×m,

with constant δ > 0.
We denote by L(·) the liability of the investor, the dynamics of

which is shown as⎧⎨⎩
dL(s) = L(s)

[
α(s)ds + β⊤(s)dW (s)

+ b⊤(s)dB(s)
]
, 0 ≤ s ≤ T ,

L(0) = l0 > 0,
(2.3)
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