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a b s t r a c t

Variable annuity is a retirement planning product that allows policyholders to invest their premiums
in equity funds. In addition to the participation in equity investments, the majority of variable annuity
products in today’s market offer various types of investment guarantees, protecting policyholders from
the downside risk of their investments. One of the most popular investment guarantees is known as
the guaranteed lifetime withdrawal benefit (GLWB). In current market practice, the development of
hedging portfolios for such a product relies heavily on Monte Carlo simulations, as there were no known
closed-form formulas available in the existing actuarial literature. In this paper, we show that such
analytical solutions can in fact be determined for the risk-neutral valuation and delta-hedging of the
plain-vanilla GLWB. As we demonstrate by numerical examples, this approach drastically reduces run
time as compared to Monte Carlo simulations. The paper also presents a novel technique of fitting
exponential sums to a mortality density function, which is numerically more efficient and accurate than
the existing methods in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Variable annuities (VAs) are life insurance contracts that offer
policyholders participation in equity investments. They provide
life contingent benefits like traditional life insurance or annuities,
while allowing policyholders to reap benefits of financial returns
on their premiums. Variable annuities were introduced in the
United States in the 1950s with the earliest products made
available by the Teachers Insurance and Annuity Association of
America (TIAA)—College Retirement Equities Fund (CREF). They
were created to provide incomes with investment returns to
retired professors. Nowadays variable annuities have become
popular products available through direct purchase or through tax-
sheltered retirement savings plans such as IRAs, 401(k)s, 403(b)s,
etc. Various forms of variable annuities are also sold in many other
markets, such as in Japan (cf. Zhang, 2006) and in Europe (cf.
O’Malley, 2007). According to Life Insurance and Market Research
Association (LIMRA)’s annuity sales survey LIMRA (2016), sales
of variable annuities amounted to $133 billions in 2015 in the
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US. According to the joint study by the Society of Actuaries and
LIMRA (cf. Drinkwater et al., 2014), the GLWB is the most popular
type, accounting for three quarters of the sales, of all guaranteed
living benefits, which include the GLWB, guaranteed minimum
withdrawal benefit (GMWB), guaranteedminimum incomebenefit
(GMIB) and guaranteed minimum accumulation benefit (GMAB).

Let us briefly describe the design of a plain vanilla GLWB. As
with any VA base contract, policyholders are offered a variety of
equity funds to invest consisting of different combinations of equi-
ties and bonds. Upon selection, future financial returns on the pol-
icyholders’ investment accounts are linked to equity funds of their
choices. The GLWB is a rider that policyholders can add to their
base contracts. In essence, the GLWB rider guarantees policyhold-
ers’ incomes for lifetimewithout having to annuitize (convert to an
immediate annuity). It allows policyholders to take withdrawals
at no additional cost up to a maximum amount per year for life-
time, even if their investment accounts are depleted. In addition, at
the time of a policyholder’s death, the remaining balance in the ac-
count, if any, will be returned to the policyholder’s beneficiary. Any
withdrawal amount beyond the maximum amount is also allowed
but subject to a penalty. To compensate for the insurer’s expenses
and cost of guarantees, charges are made as a fixed percentage of
policyholders’ investment and deducted from their accounts, typ-
ically on a daily basis.
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Although withdrawal activities can vary due to policyholders’
behaviors, SOA and LIMRA’s 2015 experience study (cf. Drinkwater
et al., 2015, p. 20) shows that ‘‘the majority of owners take
withdrawals through systematic withdrawal plans (SWPs)... When
owners use SWPs, they are likely to make withdrawals within the
maximum amount allowed in their contracts’’. This phenomenon
has been observed consistently formany years by SOA and LIMRA’s
annual experience studies. The 2015 experience study shows that
‘‘79% of owners who took withdrawals in 2013 withdrew income
that was below or close to the maximum amount calculated—up
to 110%’’ and roughly 55% of policyholders who took withdrawals
withdrew incomebetween90% and110%of themaximumamount.
Drinkwater et al. (2015, p. 24) also report that ‘‘owners rarely add
premium after the second year of owning a GLWB’’. Therefore, in
this paper, we make simplifying assumptions which are satisfied
in the majority of cases in practice. (1) The policyholder under
consideration starts taking withdrawals immediately at the time
of valuation, although the results in this paper can be easily
extended to address the accumulation of investment account in
a waiting period until the first withdrawal. (2) The policyholder
takes withdrawals at the penalty-free maximum amount every
year. (3) There is only an initial purchase payment (premium) at
the start of the contract and no additional deposits are considered.

Consider a numerical example for the illustration of GLWB
benefits. Suppose identical variable annuity contracts with the
same GLWB rider are sold to two policyholders both of age 65
at policy issue. Each of them makes an initial purchase payment
of $100 and their accounts are linked to the same equity index.
They take withdrawals at the maximum amount, which is 7%
of the initial purchase payment per year. Note that the two
contractsmay end at different points of time due to the uncertainty
with each policyholder’s time of death. Suppose that the equity
fund performs well at first, resulting that both policyholders’
investment accounts accumulate to $110 at the end of the second
year. Policyholder A dies at the end of the second year, denoted
by T A

65 = 2 in Fig. 1. He and his beneficiary would have received
a total of $124 by then, including the withdrawals from the first
two years $7 × 2 = $14 and the remaining balance at the time of
death $110. In this case, the insurer collects rider charges and other
fees for two years but makes no liability payment as policyholder
A’s account remains positive throughout his lifetime. Suppose that
the market takes a sharp down turn afterwards, which causes the
surviving policyholder B’s account value to deplete in the ninth
year. Even though the investment account has no money left,
policyholder B continues to receive the guaranteed withdrawals of
$7 per year. Policyholder B dies at the end of the twentieth year,
T B
65 = 20, so policyholder B and her beneficiary would have been

paid $7×20 = $140 in total. Note, however, in this case, not all 20
installments ofwithdrawalswould be considered as GLWBbenefit,
since $7×8 = $56 is taken out of policyholder B’s own investment
account. After the account balance hits zero in the ninth year, the
rest 7 × 12 = $84 is the actual out-of-pocket cost of the GLWB
liability for the insurer.

Although themodeling and valuation of guaranteedwithdrawal
benefits started in the insurance industry since their introduction
to the market in 2004, Milevsky and Salisbury (2006) were
among the first to lay out the theoretical framework in the
actuarial literature. The authors introduced a continuous time
model to price a GMWB from the policyholder’s perspective
and used numerical partial differential equation (PDE) methods
for solutions. Their work was extended to more sophisticated
setting by many authors, including Chen and Forsyth (2008), Peng
et al. (2012), Dai et al. (2008) and Bacinello et al. (2016), etc. A
recent work by Feng and Volkmer (2016b) provided an analytical
solution to the risk-neutral valuation of the GMWB from both the
perspective of a policyholder and that of an insurer. As the GLWB

can be viewed as an extension of the GMWB, many researchers
employed PDE and Monte Carlo simulation techniques to value
and analyze the GLWB, such as Piscopo and Haberman (2011),
Fung et al. (2014) and Huang et al. (2014), etc. This work extends
the analytical method developed in Feng and Volkmer (2016b)
to a plain vanilla GLWB in the same framework as in Fung et al.
(2014). One might question whether it is worthwhile looking for
analytical solutionswhile numerical PDEs and simulationmethods
are available to handle much more complex designs. Here are a
number of reasonswhy analytical solutions, if available, are always
preferred.

1. Analytical solutions provide benchmarks against which the ac-
curacy of PDE and simulation algorithms can be tested. This is
often an overlooked step in industrial practice. Practitioners of-
ten check if their Monte Carlo estimates reach a certain degree
of accuracy by increasing their sample sizes, thereby check-
ing the consistency of results. However, such convergence tests
onlywork if the statistics are unbiased or consistent estimators.
Simulation methods cannot easily detect inherent biases that
may exist due to various combinations of approximation tech-
niques.

2. Analytical solutions can be used to obtain cost effective
approximations of Greeks. Risk neutral valuation is often
required for determining sensitivity measures for hedging. As
the Greeks are often approximated by difference quotients,
modest sampling errors in risk neutral valuations can lead
to large relative errors in the estimation of Greeks. Such
an example can be seen in Table 8 of Section 3.2. In the
financial industry, the use of the so-called ‘‘volatility smile’’ in
Black–Scholes formulas for pricing andhedginghas beenwidely
known as ‘‘the wrong number in the wrong formula to get the
right price’’. In other words, a common practice is often to find
a comprise between the complexity of the underlying model
and the efficiency of results to be delivered. In the same spirit,
even though analytical solutions may be used on idealistic
assumptions, they provide highly efficient and low cost
approximations for otherwise difficult but precise solutions.

The paper also dedicates a significant portion to new techniques
for fitting sums of exponentials to probability density functions.
For comparison, we provide a self-contained review of various
statistical and analytical methods for approximating mortality
density functions by exponential sums, some of which are
introduced for the first time to the actuarial literature. The
approximation based on Hankel matrix appears much more
efficient at the same level of accuracy than known methods in
actuarial literature such as orthogonal polynomials. Hencewe shall
only apply the former in numerical examples in Section 3. To avoid
any digression from the main theme of pricing and hedging of the
GLWB rider, we relegate the results on fitting exponential sums to
Appendix. Nevertheless, it should be pointed out that Appendix B
could be of interest on its own and have boarder actuarial and
financial applications than pricing and hedging in this paper.

The rest of the paper is organized as follows. In Section 2, the
risk-neutral valuationmodel for the GLWB rider is introduced from
both a policyholder’s and an insurer’s perspectives. We provide
analytical solutions to both risk-neutral values of the GLWB
liabilities and the corresponding deltas. We develop in Section 3 a
number of numerical examples to compare the proposed analytical
methods with traditional Monte Carlo methods.

2. Models

2.1. Equity-linking mechanism

Suppose that a policyholder’s investment is linked to a single
equity index, which is driven by a geometric Brownianmotion and
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