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a b s t r a c t

We work with a multi-period system where a finite number of agents need to share multiple monetary
risks. We look for the solutions that are both Pareto efficient utility-wise and financially fair value-wise.
A buffer enables the inter-temporal capital transfer. Expected utility is used to evaluate the utility, and a
risk-neutral measure is essential for determining the risk sharing rules. It can be shown that in the model
setting there always exists a unique risk sharing rule that is both Pareto efficient and financially fair. An
iterative algorithm is introduced to calculate this rule numerically.
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1. Introduction

This paper explores the intertemporal risk sharing in a multi-
period setting under the notion of Pareto efficiency and financial
fairness (PEFF). Pareto efficiency means that the utility of nobody
can be improved without hurting the utility of some others,
while financial fairness indicates that the market values of the
risk positions before and after risk sharing should be equal. A
risk-sharing system with respect to monetary uncertainties – the
stochastic returns from the financial market, for instance – can be
viewed as a financial contract. On the one hand, Pareto efficiency
is fundamental in risk-sharing systems, while on the other hand
financial fairness is important in the design of financial contracts.

The model is motivated and abstracted from systems that
allow for intertemporal risk sharing. One example is the collective
defined-contribution pension systems which can be viewed as
a multilateral financial contract among both current and future
cohorts. The possibility of intertemporal risk sharing with respect
to investment risk is due to the incompleteness of the market,
i.e. the inability of generations to be exposed to risks outside their
own (mature) lifespan. A risk-sharing system tries to partly fix
this problem by allowing later generations to take risks before
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they become participants. Risk sharing shall result in welfare
gains to the generations; meanwhile, the pension contract should
also be fair from a valuation perspective. Another example is
the reinsurance market, in which insurance companies reallocate
the risks by way of reinsurance contracts among themselves.
A multi-period contract is appropriate for dealing with long-
term risks, or simply when companies agree to make multi-
period arrangements. A similar example is the design of structured
derivatives, for instance, the practice of tranching. In these
examples, Pareto efficiency is pertinent for designing the optimal
allocation of risks, while financial fairness guarantees that the
contract is fairly priced.

The characterization of Pareto efficient solutions in a single-
period setting is well studied in a lot of papers, which date back
to the 1960s with the focus mainly on the field of insurance.
For instance, Borch (1962) gives a characterization of the Pareto
efficient solutions under the situation where expected utility is
used to describe the agents’ risk preferences, and later DuMouchel
(1968) gives proof to these results. Similarwork also includes Raviv
(1979) which takes into consideration the existence of market
frictions. The fairness criterion is first considered alongside the
Pareto efficiency by, amongst others, Gale (1977), Bühlmann and
Jewell (1979) and Balasko (1979) in different settings. In these
literature, the risk sharing is built over both a utility basis and a
valuation basis.

The risk sharing problem in a multi-period setting is investi-
gated by Barrieu and Scandolo (2008) in a general setting; they
talk about risk exchanges between two agents over more than one
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period without taking into consideration any fairness conditions.
Other work has been mainly focused on the design of pension
systems and the space of intergenerational risk sharing, where
risk redistribution can be organized among both the existing and
future cohorts. Pareto-efficient risk sharing can be achieved by
maximizing the aggregate expected utility of all generations in the
situationwhere a social planner is present (e.g. Gordon and Varian,
1988; Gollier, 2008; Bovenberg and Mehlkopf, 2014) or by looking
for an equilibrium (see Ball andMankiw, 2007; Krueger andKubler,
2006). Financial fairness has been considered by Cui et al. (2011);
however, the valuation approach is only used to check afterwards
whether the distribution rule is fair for the participants. Kleinow
and Schumacher (in press) analyze the pension systemwith condi-
tional indexation from the perspective ofmarket value; they inves-
tigate whether the pension contract is financially fair for existing
and incoming cohorts aswell as the sponsor. Risk-neutral valuation
becomes essential in Bovenberg andMehlkopf (2014) to determine
a unique risk sharing solution by setting the ex-antemarket values
of the intergenerational transfers to zero.

This paper explores the Pareto efficient and financially fair risk
sharing in a multi-period environment. Expected utility is adopted
to evaluate the welfare, and a risk-neutral measure works for the
valuation purpose. We shall show the existence and uniqueness
of the PEFF solution, and give a numerical algorithm to find
it. This can be seen as a direct generalization of the research
by Pazdera et al. (2016), which explores the Pareto efficient
and financially fair risk-sharing rule in a single-period case.
Compared to Barrieu and Scandolo (2008), we restrict ourselves
to the case of expected utility as the preference functional,
and risk-neutral valuation is built into the system to determine
the uniqueness of the solution. Different from Bovenberg and
Mehlkopf (2014), no parameterization on the risk-sharing rules
is needed here; the rules are determined totally under the
notion of PEFF. Mathematically, our results resemble the famous
consumption–savings model for intertemporal substitution to
some extent. The intertemporal balance equation, as we call it, has
a close relationship with the Euler equation in the intertemporal
substitution theory; see Hall (1978). The main difference is that
the model here introduces no subjective discount factor for
impatience. The characterization of Pareto efficiency leads to a
weighted optimization problem where the weights are unknowns
to be determined uniquely by the financial fairness constraints,
making use of a risk-neutral measure.

The rest of the paper is structured as follows. The model setting
is set up in Section 2 and we formulate the problem of finding
PEFF solutions mathematically. Next we establish the existence
and uniqueness of the solution in Section 5. Explicit solution exists
whenwe assume exponential utility functions to all the agents and
deterministic asset returns; other than that, there appears to be
no hope for an explicit solution in general. We then develop an
iterative algorithm to numerically find the solution. The case of the
explicit solution is dealt with in Section 7; besides, we also give a
simple example where the numerical algorithm is implemented.
Some remarks will conclude the paper in the end.

2. Model framework

We assume a finite discrete-time system in which a finite
number of agents gather to share their risks. As a result of the risk
sharing, the agents expect to receive contingent payments from
the system. Each agent is assumed to get one single contingent
payment. The term ‘‘contingent payment’’ is general and can have
various interpretations in different circumstances. For instance, it
can refer to the risk exposure of an insurance company after risk
sharing in the case of a reinsurance contract, or the investment risk
in the case of a collective pension fund. Alongside there is also a

long-lived buffer which makes the intertemporal money transfer
possible.

The system starts at time t0. Assume that altogether there are
N contingent payments happening at time t1 ≤ t2 ≤ · · · ≤ tN ,
where N is some positive integer. Cn will stand for the contingent
payment paid out from the system at time tn. Let Fn be the buffer
size at time tn. Xn denotes the financial risk coming into the system
from the agents from time tn−1 to tn, that is, it is the sum of all
the stochastic cash inflows from the agents from time tn−1 to tn.
The risk stream X = (X1, . . . , XN) is defined in a financial market
in which prices are given exogenously. The buffer is invested in a
risky asset R which produces stochastic per-dollar gross return Rn
from time tn−1 to tn. Here the Cn’s and Fn’s are decision variables,
and the Xn’s and Rn’s are the risks to be shared.

The Xn’s and Rn’s are random variables defined on a finite
probability space (Ω, F , P) where P is the objective measure. F
is the filtration generated by the X ’s and R’s:

F = {Fn|n = 1, . . . ,N}, Fn = σ {(X1, R1), . . . , (Xn, Rn)}.

There is also a risk-neutralmeasureQdefined on theprobability
space besides the objective measure P. There is no need to assume
the completeness of the market; any given risk-neutral measure
Q will suffice. The only assumption is that the agents have agreed
to adopt some probability measures P and Q, or the measures are
simply specified in a situationwhere a social planner is present. Let

En[·] = E[·|Fn].

It is assumed that the process {(Xn, Rn)} is sequentially
independent under P and Q, that is, (Xt , Rt) and (Xs, Rs) are
independent for t ≠ s under P and Q. For n = 1, . . . ,N ,
the random variables Xn and Rn need not be independent, and
their joint distribution is known. As we are working on a finite
probability space, the total number of outcomes of (Xn, Rn) is finite
for all n. Illustrated by Fig. 2, the risks can be seen as a multinomial
tree and every pair (Xn, Rn) can then be totally characterized by

(X jn
n , Rjn

n ), P(jn), Q(jn)
 jn = 1, . . . ,mn


where (X jn

n , Rjn
n ) represents all the possible and distinct values

of (Xn, Rn) and P(jn), Q(jn) are the corresponding P- and Q-
probabilities. A technical requirement is that for any n = 1, . . . ,N

Q ({ω ∈ Ω|Xn(ω) = max Xn, Rn(ω) = max Rn}) > 0, (2.1)

which means that Xn and Rn can attain their maximum under Q
simultaneously. Furthermore we assume that Rn > 0 for all n as
the R’s have the interpretation as the gross return of the asset R.

Write Jn = j1j2 · · · jn as the trajectory

(X j1

1 , Rj1
1 ), . . . ,

(X jn
n , Rjn

n )

. Let Jn be the set of all the possible trajectories of (X, R)

up to time tn. Jnjn+1 will denote any trajectory whose up-to-time-
tn part is Jn. In such a situation we write jn+1 ∈ Jn+1

n where Jn+1
n

denotes the set of all the possible cases of (Xn+1, Rn+1).
The risk-neutral measure Q is used to price the risks X as well

as the investment returns R. In this generic setting, write

xn := EQXn, 1 + rn := EQRn, n = 1, . . . ,N.

The xn’s are themarket prices of the risks X and the rn’s are the risk-
free returns implied by thepricingmeasureQ. Please note that now
and later we directly work with future values for convenience.

Note that the time points {t0, t1, . . . , tN} need not be equidis-
tant. As shown in Fig. 1, two or more time points can be equal if
there are more than one contingent payment paid out at the same
time. In that case, say tn−1 = tn for some n, we shall have Xn ≡ 0
and Rn ≡ 1, because there will be no risks coming in and the buffer
will not evolve with respect to asset return.
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