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a b s t r a c t

This paper extends the framework for the valuation of life insurance policies and annuities by Andrés-
Sánchez and González-Vila (2012, 2014) in two ways. First we allow various uncertain magnitudes to be
estimated by means of fuzzy numbers. This applies not only to interest rates but also to the amounts to
be paid out by the insurance company. Second, the use of symmetrical triangular fuzzy numbers allows
us to obtain expressions for the pricing of life contingencies and their variability that are closely linked to
standard financial and actuarial mathematics. Moreover, they are relatively straightforward to compute
and understand from a standard actuarial point of view.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic techniques are, beyond doubt, at the core of actuarial
mathematics. However, in insurance decision-making problems,
as well as in other areas related to economics and finance, much
of the information is imprecise and vague, or relies heavily on
subjective judgments and, so, it is not clearly measurable. For
such information, the use of fuzzy set theory (FST) can represent
a suitable alternative and/or a supplementary way to that of pure
statistical methods as has been shown in De Wit (1982), Lemaire
(1990), Ostaszewski (1993), Cummins and Derrig (1997), Andrés-
Sánchez and Terceño (2003) and Shapiro (2004).

In the field of the financial pricing of insurance, FST has been
used to model discount rates. Cummins and Derrig (1997), Derrig
and Ostaszewski (1997) and Andrés-Sánchez (2014) do so in a
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non-life context, while Lemaire (1990), Ostaszewski (1993) and
Betzuen et al. (1997) model discount rates for life insurance
contingencies valuation. In these papers probabilities, however,
are reduced to predefined frequencies and so, the financial
pricing of insurance contracts is solved by applying the fuzzy
financial mathematics developed by Buckley (1987). Anyway,
when applying these methods probabilistic information is lost
because random magnitudes are reduced to their mathematical
expectation.

Shapiro (2009) exposes the concept of fuzzy random variables
(FRVs)with Actuarial Science in view. Similarly, Huang et al. (2009)
develop an individual risk model in which the cost of accidents
is estimated using fuzzy numbers (FNs), while the number of
claims follows a Poisson process. In the field of life insurance,
Andrés-Sánchez andGonzález-Vila Puchades (2012, 2014) develop
a methodology in which discount rates are fuzzy whereas the
mortality is strictly random. In these papers the stochastic
modeling of life contingencies with deterministic discount rates
and monetary amounts (see Wolthuis and Van Hoek, 1986 for a
complete description) is extended to cases in which the discount
rates are fuzzy and, so, the outcomes (the present value of insured
life contingencies) are fuzzy sets. All these developments also rely
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on the concept of FRVs. In their works, the authors do not assume
any particular shape for fuzzy interest rates and consequently
no closed expressions for those present values are developed.
Likewise, only crisp unitary amounts are considered.

This paper extends the previous findings of Andrés-Sánchez
and González-Vila Puchades (2012, 2014) in two ways. First, we
also allow the insured amounts to be paid out by the insurance
company to be uncertain and to be quantified with FNs, which
is a more general framework. Note, that, in fact, these amounts
may be linked to economic indexes, such as the consumer price
index, a wage growth rate, etc. Likewise, if we are evaluating
the underwriter’s overall outcome of a policy, future maintenance
costs, general and settlement expenses, etc. may not be known
exactly a priori.

Second, we suppose that the amounts to be paid and the
interest rates are fittedwith symmetrical triangular fuzzy numbers
(STFNs). Indeed, the use of these FNs is very common in the
fuzzy literature. In a strictly actuarial context, we find Andrés-
Sánchez and Terceño (2003), Shapiro (2013) and Heberle and
Thomas (2014). Despite that under these hypothesis the present
value of the analyzed life contingencies structures does not
turn into a STFN, we will propose a STFN approximation that
is relatively easy to implement and understand with standard
actuarial skills since it relies on conventional statistical and
financial concepts. In our opinion, the issue of maintaining the
symmetrical triangular shape in the present value of insurance
contract is relevant. Following Grzegorzewski and Pasternak-
Winiarska (2014) complicated forms of FNs may cause unpleasant
drawbacks in processing imprecise information modeled by
these fuzzy structures including problems with calculations,
computer implementation and in interpretation of the results.
This is the reason why a suitable approximation of FNs is
an interesting alternative to substitute the original ‘‘input’’
membership functions by another ‘‘outputs’’ which are simpler
or more regular and hence more convenient for further tasks.
In this sense Grzegorzewski and Mrówka (2005) indicate that
triangular approximation can be considered a more complete
kind of defuzzification than simply reducing a FN to a crisp
representative value given that performing defuzzification early
may result in a loss of too much information and it is better to
process fuzzy information as long as possible. Bearing in mind
this idea, we are looking for simplification in the computational
process and the interpretation of the results on the one hand but,
on the other, we do not want to simplify too much the original
information.

We structure the rest of our paper as follows. In Section 2
we describe the concepts and instruments of FST used in
our developments: FNs and FRVs. We then develop a STFN
approximation for the present value derived from STFN cash-flows
and discount rates with a straightforward financial interpretation.
In Sections 4 and 5 we introduce the use of FRV with STFN
outcomes to price life contingencies. We conclude our paper with
a summary of the main conclusions and possible extensions.

2. Fuzzy numbers and fuzzy random variables

2.1. Fuzzy numbers and fuzzy arithmetic

In this section we describe the basic concepts of FST and FNs
and so present the basic notation used throughout this paper. The
basic concept on which FST is based is fuzzy set. A fuzzy set Ã can
be defined as Ã =


x, µÃ (x)


|x ∈ X


, where µÃ is known as

the membership function and is a mapping from the referential
set X to the interval [0, 1], i.e. µÃ : X → [0, 1]. Therefore,
0 indicates non-membership in the fuzzy set Ã and 1 indicates

absolutemembership. Alternatively, a fuzzy set can be represented
by its α-level sets or α-cuts. An α-cut is a crisp set Aα , where
Aα =


x ∈ X |µÃ (x) ≥ α


, ∀α ∈ (0, 1], with the convention that

Aα=0 is the closure of the support of Ã, i.e. all x ∈ X thatµÃ (x) ≥ 0.
A fuzzy number is a fuzzy set Ã defined over the set of real

numbers and it is a fundamental concept of FST for representing
uncertain quantities. It is normal, i.e. maxx∈X µÃ(x) = 1, and
convex, that is, its α-cuts are closed and bounded intervals. So,
they are Aα =


A (α) , A (α)


, where A (α) (A (α)) are continuously

increasing (decreasing) functions of the membership level α ∈

[0, 1]. A FN can be interpreted as a fuzzy quantity approximately
equal to the real number for which the membership function
takes the value 1. In this paper we use symmetrical triangular fuzzy
numbers, which we denote as Ã = (A, rA). The value A is the core
(mode or center) and it can be understood as the most reliable
value of the FN, i.e. µÃ(A) = 1. Likewise rA ≥ 0 is the spread or
radius and indicates the variability of Ã respect its mode A. Thus,
the membership function and its corresponding α-cuts are:

µÃ(x) = max

0, 1 −

|x − A|

rA


Aα =


A (α) , A (α)


= [A − rA (1 − α) , A + rA (1 − α)] . (1)

The expected value of the FN Ã, EV

Ã; λ


, is a representative real

value of this FN that was developed in Campos and González
(1989). This concept allows us to introduce the risk aversion of the
decision maker with a coefficient 0 ≤ λ ≤ 1 in such a way that:

EV

Ã; λ


= (1 − λ)

 1

0
A (α) dα + λ

 1

0
A (α) dα. (2a)

In (2a), λ graduates the importance of the lower and upper
extremes of Aα when defuzzifying Ã. So, the greater the risk
aversion of the decision maker is, the greater λ is. For example, in
a non-life claim reserving context Heberle and Thomas (2014) and
Andrés-Sánchez (2014) use this criteria to defuzzify the value of
reserves previously given by FNs in such a way that λ > 0.5 for a
risk-averse criteria for reserving.

So, for a STFN Ã = (A, rA) it is straightforward to check that:

EV

Ã; λ


= A + rA


λ −

1
2


. (2b)

Let f (·) be a continuous real valued function of n-real variables xj,
j = 1, 2, . . . , n, and let Ã1, Ã2, . . . , Ãn n FNs. Then Zadeh’s extension
principle in Zadeh (1965) allows us to define a FN B̃ induced by the
FNs Ã1, Ã2, . . . , Ãn through f (·) as B̃ = f


Ã1, Ã2, . . . , Ãn


.

Although it is usually impossible to obtain the membership
function of B̃, it is often possible to obtain a closed expression for its
α-cuts, Bα . If f (·) is increasing with respect to the firstm variables,
m ≤ n, and decreases in the last n − m variables, Buckley and Qu
(1990) demonstrate that:
Bα =


B (α) , B (α)


=

f

A1 (α) , A2 (α) , . . . , Am (α) , Am+1 (α) ,

Am+2 (α) , . . . , An (α)

,

f

A1 (α) , A2 (α) , . . . , Am (α) , Am+1 (α) ,

Am+2 (α) , . . . , An (α)


. (3)

When f (·) is simply a linear combination of its variables
n

j=1 kjxj,
kj ∈ ℜ, j = 1, 2, . . . , n, the result of evaluating this function with
Ãj =


Aj, rAj


, j = 1, 2, . . . , n, is a STFN B̃ = (B, rB), where:

B =

n
j=1

kjAj, rB =

n
j=1

kj rAj .
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