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a b s t r a c t

In this paper, the Conditional Value-at-Risk (CVaR) is adopted to measure the total loss of multiple
lines of insurance business and two nonparametric estimation methods are introduced to explore the
optimal multivariate quota-share reinsurance under a mean-CVaR framework. While almost all the
existing literature on optimal reinsurance are based on a probabilistic derivation, the present paper
relies on a statistical analysis. The proposed optimal reinsurance models are directly formulated on
empirical data and no explicit distributional assumption on the underlying risk vector is required. The
resulting nonparametric reinsurance models are convex and computationally amenable, circumventing
the difficulty of computing CVaR of the sum of a generally dependent random vector. Statistical
consistency of the resulting estimators for the best CVaR is established for both nonparametric models,
allowing empirical data to be generated from any stationary process satisfying strong mixing conditions.
Finally, numerical experiments are presented to show that a routine bootstrap procedure can capture the
distributions of the resulting risk measures well for independent data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Reinsurance can be an effective way of managing risk by trans-
ferring risk from an insurer (also referred to as the cedent) to a
second insurance carrier (referred to as the reinsurer). The study
of optimal reinsurance design has attracted great attention from
both academicians an practitioners since the seminar work of
Borch (1960). In the past half-century, a variety of optimal rein-
surance designs have been devised by either minimizing certain
risk measure of an insurer’s risk exposure or maximizing the ex-
pected utility of the final wealth of a risk-averse insurer; see,
for example, Borch (1960), Arrow (1963), Raviv (1979), Huber-
man et al. (1983), Young (1999), Kaluszka (2001) and Kaluszka
and Okolewski (2008), and references therein. More recently, the
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) based
optimal reinsurance designs have been extensively studied due to
the prevalent use of the two risk measures in financial and insur-
ance practice; see, for instance, Gajek and Zagrodny (2004), Huang
(2006), Cai et al. (2008), Balbás et al. (2009), Cheung (2010), Tan
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et al. (2011), Asimit et al. (2013), Chi and Weng (2013), Cheung
et al. (2014a) and Tan and Weng (2014), just to name a few.

Almost all the optimal reinsurance models in the afore-
mentioned literature are for a single random variable, and the
results are therefore applicable only to aggregate loss. In the insur-
ance practice, however, an insurer with multiple lines of business
often purchases reinsurance separately for each line of business.
Therefore, from the perspective of enterprise risk management, it
is prudent for the insurer to investigate the strategies to buy rein-
surance on each individual line of business and attain the optimal-
ity in certain integrated sense. Due to the inherent dependence
among the risks of individual lines, optimal multivariate reinsur-
ance problems are usually difficult to be solved. Under certain spe-
cial dependence structure, Denuit and Vermandele (1998) and Cai
and Wei (2012) show that an excess-of-loss reinsurance is opti-
mal for the expected value reinsurance premiumprinciple. Cheung
et al. (2014b) propose a minimax model and its solution is also in
favor of excess-of-loss reinsurance. Zhu et al. (2014) study themul-
tiple optimal reinsurance by minimizing the multivariate lower-
orthant Value-at-Risk, and shows that a two-layer reinsurance for
each line is optimal for various reinsurance premium principles.

In the present paper, we consider the insurer’s optimal decision
on purchasing multivariate quota-share reinsurance against its
losses from multiple lines of business, in view that quota-share
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reinsurance is one of the main proportional reinsurance contracts
and it remains among the most popular forms of reinsurance in
insurance practice, particularly for life insurance. Under a quota-
share reinsurance treaty, the reinsurer takes a stated percentage
share of each policy that an insurer underwrites. The reinsurer
receives that stated percentage of the premiums and pays the
stated percentage of claims. Therefore, the determination of the
optimal multiple quota-share reinsurance boils down to deciding
on the optimal percentage share (called quota-share coefficient)
for each line of business. In the present paper, the optimal
reinsurance treaties are studied under a mean-CVaR framework,
where the Conditional Value-at-Risk (CVaR) is adopted to measure
the total loss of multiple lines of insurance business and a
constraint on the insurer’s expected net profit is imposed.

The proposed mean-CVaR optimal reinsurance model is theo-
retically appealing as it allows the insurer to balance its risk and
reward in exploring optimal reinsurance purchase strategies. Nev-
ertheless, such theoretical model is subject to two major issues.
First, its formulation heavily relies on the distribution of the un-
derlying risk vector, which in practice is uncertain and needs to
be estimated from empirical data. Second, even though the dis-
tribution of the underlying risk vector is explicitly known, the
analysis of optimal reinsurance is often intimidatingly challenging
because it involves computing the CVaR of the aggregate risk from
a generally dependent random vector. In the present paper, we
follow the idea of Weng (2009) (also see, Tan and Weng, 2014)
and formulate optimal reinsurance models directly from empiri-
cal data, leading to fully nonparametric models. We propose two
types of nonparametric models upon the theoretical mean-CVaR
framework and a representation result of CVaR from Rockafellar
and Uryasev (2002). The first one is directly formulated under the
empirical measure and it leads to a linear programming problem,
which we refer to as ‘‘linear programming model’’ throughout the
paper. Second, we propose a kernel estimation for the risk mea-
sure CVaR and the resulting nonparametric model becomes a con-
vexprogramming. Such amodel is termed as ‘‘kernel-basedmodel’’
throughout the paper. The actuarial literature seem quite sparse
on the non-parametric estimation of risk measures. To the best
knowledge of the authors, Peng et al. (2015) and Wang and Peng
(2016) are two of such recent papers.

Generally, there are four solutionmethods for a stochastic opti-
mization problem (such us our mean-CVaR optimal reinsurance):
sample average approximation (SAA), stochastic approximation,
response surfaces, and metamodels. The non-parametric methods
proposed for the mean-CVaR optimal reinsurance model in this
paper can be categorized into the group of SAA. The idea of SAA
is that the objective function is approximated by the average of
the realizations, and then the problem becomes deterministic so
that many deterministic search methods can be used to solve the
approximate problems; see Robinson (1996), Shapiro and Wardi
(1996) and Shapiro et al. (2002) and references therein.

One integral aspect to address an optimization problem using
the SAA is the convergence of the approximation to the true
optimal value in a stochastic optimization problem. In this paper,
the best risk measure level solved from both nonparametric
models is formally shown convergent to the theoretically best level
for empirical data generated from any stationary process satisfying
certain moment and strong mixing conditions. These convergence
results cannot be derived trivially from the existing literature
on SAA for stochastic optimization. Firstly, the realizations or
observations are always assumed independent and identically
distributed (i.i.d.) in the literature and most theoretical results
such as consistency and convergence rate follow directly from
the standard law of large numbers and central limit theorem
due to the simple assumptions; for example, see Shapiro (1991),
Rubinstein and Melamed (1998) and Shapiro et al. (2009). In

contrast, our convergence results apply to empirical datawhich are
generated from any stationary process satisfying certain moment
and strong mixing conditions (see Assumption 6.1 in the sequel),
which includes the i.i.d. as a special case and better reflects the
dependence nature of insurance data.

Secondly, in order to establish convergence results, most
existing literature on SAA exploit the Lagrangian duality method
so that the randomness is only present in the objective function,
and eventually conduct asymptotic analysis via functional spaces;
see, for example, Shapiro (1991). It is well known that such a
functional space based methodology is typically challenging, if not
impossible, to be applied to a general dependent case like the
strongmixing dependence in ourmodels. So, we take a completely
different way to prove the convergence results. We do not apply
the Lagrangian duality method in our proof; instead, we keep the
randomness in both objective and feasible set. To deal with the
random feasible set, we follow the idea of perturbation analysis,
where bounds of the random feasible set are applied and they
converge to the true deterministic feasible set along with the
increase of sample size. Such an idea can be seen in Lemma 6.3 and
the proof of Proposition 6.1.

To end the section, we summarize the advantages of our pro-
posed empirically data-based models. First, they are completely
data-based and no explicit assumption is required on the distribu-
tion of the loss random vector. Second, the proposed nonparamet-
ric models bypass the technical obstacle of computing the CVaR
of the aggregate loss from a generally dependent random vector,
which cannot be circumvented in a theoretical model. Third, the
proposed nonparametric models are computationally amenable
and can be solved efficiently as either a linear programming or a
convex programming. Fourth, statistical consistency results are es-
tablished to provide theoretical support to our proposed nonpara-
metric models. Our numerical simulation with exponential and
Pareto marginal distributions and Gaussian copula illustrate that
both the linear programmingmodel and kernel-basedmodel work
well for reasonably large sample size, with the latter perform-
ing better than the former. Finally, our numerical experiments in
Section 7.4 demonstrate that a typical bootstrap procedure can
capture the distributions of the resulting risk measures well for in-
dependent sample.

The rest of the paper proceeds as follows. The mathematical
formulation of multiple quota-share reinsurance is introduced
in Section 2, and the theoretical mean-CVaR reinsurance model
is defined in Section 3. The linear programming model and
the kernel-based model are specified in Section 4. Consistency
properties for the proposed nonparametric reinsurancemodels are
shown in Section 6. Numerical studies are presented in Section 7
for performance comparison between the linear programming
model and kernel based model. In the same section, a bootstrap
procedure is proposed for uncertainty quantification of the
resulting risk measures (which are random variables) from the
twonon-parametricmodels. Section 8 concludes the paper. Finally,
some technical lemmas are given in Appendix A, and some proofs
are collected in Appendices B and C.

2. Multiple quota-share reinsurance

Let X = (X1, X2, . . . , Xp) be the claim (aggregate) loss vector
on p lines of an insurer’s business, where Xi denotes the aggregate
nonnegative loss random variable (in the absence of reinsurance)
the insurer is subject to in its ith line of business with cumulative
distribution function Fi(x) = P(Xi ≤ x), survival function F i(x) =

1 − Fi(x) = P(Xi > x) and mean µi = E[Xi] < ∞, i = 1, . . . , p.
The insurance premium is often calculated by the expected

value principle in insurance practice, because the safety loading
on the top of the net premium can be justified by estimating the
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