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h i g h l i g h t s

• Feasible forecasting methods from data only available at historical calendar times.
• Applications to stochastic claims reserving and asbestos mortality forecasting.
• Finite sample simulations under scenarios close to real life problems.
• Novel general asymptotic theory for the proposed methods.
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a b s t r a c t

This paper shows that recent published mortality projections with unobserved exposure can be under-
stood as structured density estimation. The structured density is only observed on a sub-sample corre-
sponding to historical calendar times. The mortality forecast is obtained by extrapolating the structured
density to future calendar times using that the components of the density are identified within sample.
The newmethod is illustrated on the important practical problem of forecastingmesothelioma for the UK
population. Full asymptotic theory is provided. The theory is given in such generality that it also intro-
ducesmathematical statistical theory for the recent continuous chain laddermodel. This allows amodern
approach to classical reserving techniques used every day in any non-life insurance company around the
globe. Applications to mortality data and non-life insurance data are provided along with relevant small
sample simulation studies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let us assume that we have a structured density defined as
a density that is a known function of one-dimensional densities,
see Mammen and Nielsen (2003) for the equivalent definition of
structured regression. Assume furthermore that observations are
available from this structured density on a restricted support only.
Finally assume that the character of this restricted support is such
that in-sample information is available for all the one-dimensional
functions defining the original structured density. In this situation,
an extrapolation or forecast is immediately available for that part
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of the support without observations. It turns out that one of the
most important problems in non-life insurance, estimation of out-
standing liabilities in reserving, has exactly this form. The struc-
tured density is most often a multiplicative density in this case.
The support with observations represents insurance claims until
the current calendar time, and the support without observations
represents future insurance claims. This forecastmethod has tradi-
tionally been called the chain ladder technique in actuarial science
and the multiplicative density has been estimated as a structured
histogram or equivalently from maximum likelihood assuming a
multiplicative Poisson structure, seeWüthrich andMerz (2008) for
an overview and Kuang et al. (2009), Verrall et al. (2010),Martínez-
Miranda et al. (2011, 2012, 2013a,b,c), for recent reformulations of
classical chain ladder in mathematical statistical terms published
in the actuarial literature. Other recent contributions in reserv-
ing considering statistical models based on individual claims in-
clude Antonio and Plat (2014) and Pigeon et al. (2013, 2014). The
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longevity problem is another important application of structured
density forecasting and as in non-life insurance a histogram type
of approach is widely used and analyzed, see Haberman and Ren-
shaw (2012) and Hatzopoulos and Haberman (2013). In this paper
we propose to use our alternative approach based on structured
non-parametric models and we illustrate its power by applying it
to mesothelioma mortality forecasts. We compare our empirical
findings with Martínez-Miranda et al. (2015) who used a classical
approach based on a multiplicative Poisson structure.

While we stick to the multiplicative density structure in this
paper, it is evident that important generalizations are possible. One
could add a variety of one-dimensional densities to the overall
structure leading to non-multiplicative structures. It would also
be interesting to generalize the approach of this paper to other
sources of mortality than age and cohort. One example would be
to add calendar time effects generalizing the histogram approach
to calendar effect estimation developed in Kuang et al. (2008a,b).
Another would be to add time independent or time dependent
covariates. It would be also interesting to consider the work of
Zhang et al. (2013) to develop distribution free prediction sets, see
Lei et al. (2013). Finally, the approach of projecting a multivariate
density smoother downon the structure of interest is not restricted
to local linear density smoothers and could be generalized to other
multivariate density smoothers including Panaretosa and Konis
(2012), Xiao et al. (2013) and Lu et al. (2013).

The paper is organized as follows. In Section 2 the structured
density model is formulated in the special multiplicative case. A
projection approach based on local linear density estimation is
defined. The asymptotic properties of the suggested method are
provided in Section 6 (with more details and proofs deferred to
Appendix). Applications to non-life insurance and mesothelioma
mortality forecasting are explained in Section 3. While these two
applications rely on the multiplicative density structure, observa-
tions are available on very different underlying supports. However,
for both applications the entering one-dimensional densities are
identified by the observed data. The analyses of two datasets are
described in Section 4. Section 5 includes a brief simulation study
with simulation settings defined to be close to real life situations.
All the calculations in the paper have been performed with R, (R
Development Core Team, 2014).

2. Multiplicative density forecasting

2.1. Model formulation

Let us consider n i.i.d. observations {(Xi, Yi), i = 1, . . . , n} from
a two-dimensional variable (X, Y ) having a density f with support
on a subset If of the rectangle Sf = {(x, y) : 0 ≤ x ≤ T1, 0 ≤ y ≤

T2}, with T1, T2 > 0. The aim is to forecast the density of (X, Y ) in
Sf from the given observations that are only available in the set If .
To this goal let us assume that f is multiplicative, i.e., it is of the
form:

f (x, y) = cf f1(x)f2(y), (1)

where f1 and f2 are probability densities on [0, T1] and [0, T2],
respectively. The constant cf is chosen such that

If

cf f1(x)f2(y)dx dy = 1. (2)

This formulation transforms the original forecasting problem to
an estimation problem of the densities f1 and f2. The approach of
this paper is developed for a general support If including the two
different support structures that came up in our two applications
(mortality studies and insurance reserving). See also Nielsen and

Linton (1998) for related projection methods in structured non-
parametric regression.

Note that if the support where the densities are observed is a
rectangle, then the estimation problem would be trivial and both
components could be estimated separately. The non-rectangular
supports considered in this paper imply that the estimation prob-
lem is more complicated. However, we are only considering non-
rectangular supports, where the multiplicative components are
still estimable in-sample. While the term in-sample forecasting is
defined in this paper, the in-sample forecasting trick is an old one
and has been used in non-life insurance in actuarial science as long
as anyone remembers. In actuarial science the non-rectangular
support is a triangle and the multiplicative structure is estimated
via a parametric approach related to maximum-likelihood estima-
tion, see Kuang et al. (2009). It has recently been pointed out that
this classical actuarial forecasting methodology can be understood
as first estimating amultiplicatively structured histogramand then
extrapolating into the future, see Martínez-Miranda et al. (2013a).
More complicated structures violating the independence assump-
tion between X and Y could also be considered. This is, however,
beyond the scope of this paper. Among many examples one could
imagine that a calendar time effect enters the model in some mul-
tiplicative way, see Kuang et al. (2011) for a classical structured
histogram approach to forecasting including such a calendar effect.

2.2. The projection approach

Consider the density f with support If and consider one point
(x, y) ∈ If . The local linear estimator introduced in Nielsen (1999)
and Müller and Stadtmüller (1999) is derived by solving the fol-
lowing minimization problem:Θ = argmin

Θ
lim
b→0


If

fb(u, v) − θ1 − θ2,1(u − x) − θ2,2(v − y)
2

× Kh1(u − x)Kh2(v − y)du dv, (3)

where Θ = (θ1, θ2,1, θ2,2),Θ = (θ1,θ2,1,θ2,2) andfb(u, v) =

n−1n
i=1 Kb(Xi −u)Kb(Yi −v). Here Kb(u) = b−1K(u/b), for a one-

dimensional symmetric kernel function K and bandwidth param-
eters b > 0, h1 > 0, h2 > 0. The local linear density of f (x, y) is
given byfh;If (x, y) = θ1, which is defined for any given vector of
bandwidth parameters h = (h1, h2) ∈ R2

+
.

Note thatfh;If (x, y) is an estimator of the density f of (X, Y )
restricted to the support If . Forecasting into the future amounts
to extrapolating our estimated density to the full support Sf . This
forecast or extrapolation is only possible under some assumptions
on the functional form of f (x, y). In this paper, we consider
one of the simplest structured density options (1) and project
the unrestricted local linear estimator down on the relevant
multiplicative space. Specifically cf , f1 and f2 are estimated by
minimizing the following expression:

min
cf ,f1,f2


If

fh;If (x, y) − cf f1(x)f2(y)
2

w(x, y)dx dy, (4)

under the constraint that
 T1
0 f1(x)dx = 1 and

 T2
0 f2(y)dy = 1.

Here w is some weighting function such that w(x, y) > 0.
In practice, the above minimization can be done by using the

following iterative algorithm:

1. Consider the estimatorfh;If derived above andf (0)
1,h being an

initial estimator of f1.
2. Calculate an estimator the f2 as

f (1)
2,h (y) =


Iy
fh;If (x, y)w(x, y)dx
Iy
f (0)
1 (x)w(x, y)dx

,

where Iy = {x : (x, y) ∈ If }.
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