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a b s t r a c t

We investigate the total time of deducting fees for variable annuities with state-dependent fee. This fee
chargingmethod is studied recently by Bernard et al. (2014) andDelong (2014) inwhich the fees deducted
from the policyholder’s account depend on the account value. However, both of themhave not considered
the problem of analyzing probabilistic properties of the total time of deducting fees. We approximate
the maturity of a general variable annuity contract by combinations of exponential distributions which
are (weakly) dense in the space that is composed of all probability distributions on the positive axis.
Working under general jump diffusion process, we derive analytic formulas for the expectation of the
time of deducting fees as well as its Laplace transform.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Variable Annuities (VAs) are generally issued with minimum
guarantee on the death or maturity benefits and keep in high de-
mand due to the embedded guarantees. Nowadays, a variety of
guarantees are provided, such as GuaranteedMinimumDeath Ben-
efits (GMDBs), Guaranteed Minimum Maturity Benefits (GMMBs),
Guaranteed Minimum Accumulation Benefits (GMABs) and so on,
see Bauer et al. (2008). In the academic circle, VAs have received
substantial attention, see among others, Lee (2003), Gerber and
Shiu (2003), Ko et al. (2010), Bacinello et al. (2011) andGerber et al.
(2012, 2013).

In general, insurers charge expenses for the provision of the
guaranteed benefits from thepolicyholder’s account by a fixed rate,
and most actuarial literatures assume that the fee rate is fixed as
well, see e.g. Hyndman and Wenger (2014). However, this fixed
fee structure has several disadvantages which have been noted by
Bernard et al. (2014) and Delong (2014). For example, as the guar-
anteed benefits embedded in variable annuities are similar to put
options, if the account value is high, the guarantees are (deep) out-
of-the-money. In this case, a higher deducted fee will yield incen-
tives for policyholders to lapse the policy, see Bauer et al. (2008).

Recently, Bernard et al. (2014) put forward a dynamic fee struc-
ture. In their paper, the fees are deducted at a fixed rate only if the
account value is lower than a pre-specified level. They have de-
rived formulas for calculating the fee rates under the Black–Scholes
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model. Delong (2014) then extended their model to an incomplete
financial market which is made up of two risk assets that are mod-
eled by a two-dimensional Lévy process, and he considered a gen-
eral state-dependent fee which is determined by a function of the
account value. In his paper, the fee for the guaranteed benefit can
be computed by solving an equation, and a strategy for hedging the
guarantee is also characterized.

Under a state-dependent fee structure, sometimes insurers do
not have any fees income, e.g., when the account value is higher
than a pre-specified level in Bernard et al. (2014). Therefore, insur-
ers are interested in the problem that how long they can collect
fees or alternatively, how long they cannot. In nature, insurers are
interested in the probabilistic properties of the total time of col-
lecting fee, for example its expectation. Besides, this total timewill
determine insurers’ income directly and have a significant impact
on the account value indirectly. The above problem has not been
considered in Bernard et al. (2014) and Delong (2014), and we are
the first to investigate it to our knowledge.

In this paper, we assume that the fees are deducted as in
Bernard et al. (2014), which is one of the fee charging structures
investigated in Delong (2014). Under the simple Black–Scholes
model as well as the complex hyper-exponential jump diffusion
process model, we obtain analytic formulas for the Laplace trans-
form of the total time of deducting fees and its expectation as well.

The rest of this paper is organized as follows. Our model is
introduced in Section 2. In Section 3, under the hyper-exponential
jump diffusion process, we derive our main results. In Section 4,
three special cases of the general model are discussed in detail
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where the formulas become simpler. Finally, some conclusions are
given in Section 5.

2. The model

Suppose X = (Xt)t≥0 is a jump diffusion process, i.e.,

Xt = X0 + µt + σWt +

Nt
k=1

Zk, (2.1)

whereµ and X0 are constants; {Wt; t ≥ 0} is a standard Brownian
motion with W0 = 0, and σ > 0 is the volatility of the diffusion;
{Zk; k = 1, 2, . . .} are independent and identically distributed ran-
dom variables supported on R/{0}, and the common probability
density function (pdf) of {Zk; k = 1, 2, . . .} is denoted by fZ (z);
{Nt; t ≥ 0} is a Poisson process with rate λ; moreover, {Wt}, {Nt}
and {Zk; k = 1, 2, . . .} are independent. The law of X starting from
x is denoted by Px and Ex represents the corresponding expecta-
tion, and for the sake of brevity, we write P and E when x = 0.

We define the process S = (St)t≥0

St = S0eXt−X0 , (2.2)
which can be explained as the value of one unity of the reference
fund or stock underlying the variable annuity contract, and it is
reasonable to assume that E [X1] > 0. According to (2.6) in Delong
(2014), if we let Ft denote the policyholder’s account value at time
t , then its dynamics are represented by the following stochastic
differential equation (SDE)

dFt = Ft−
dSt
St−

− g(Ft−)dt, t > 0, (2.3)

and F0 is the initial premium invested by the insured, and g is a
function which represents a state-dependent fee charged by the
insurer.

In Bernard et al. (2014), they assumed that X is a Brownian
motion and g is given by
g(x) = αx1{x<B}, (2.4)
where α and B denote the deduction fee rate and a pre-specified
level, respectively; and 1A is the indicator function of a set A. Func-
tion (2.4) means the expense is charged only when the account
value is less than the pre-specified level B. In this paper, we con-
sider the case that g satisfies Eq. (2.4) and the investigation of
general g is left for future research. For the advantages of this fee
deducting method, see Bernard et al. (2014) and Delong (2014).

Let Ut satisfy the following SDE

dUt = dXt − α1{Ut<b}dt, t > 0,
and U0 = X0,

(2.5)

where b = ln


B
F0


. Then, when U0 = 0, we obtain the following

equation of Ft and Ut by Itô’s formula.

Ft = F0eUt , t ≥ 0. (2.6)
Because the parameter σ > 0 and the jump part of X is a com-

pound Poisson process, we have the following lemma of the exis-
tence of a unique strong solution of (2.5). For the proof of it, one
can see Remarks 2 and 3 in Kyprianou and Loeffen (2010) and the
proof of Lemma 2.1 in Delong (2014) for reference.

Lemma 2.1. Eq. (2.5) exists a unique strong solution. Moreover the
solution U is a strong Markov process.

Consider a customer age z purchasing a VA contract. If the guar-
antee embedded is GMMBs, then the maturity of the contract is a
given date T . For the guarantee of GMDBs, the maturity is given by
min{Tz, T } for endowment policy or Tz for whole life (see Gerber
et al., 2012 for example), where Tz is the random variable repre-
senting the time of death of the insured and independent of the
account value process Ft . In this paper, we ignore other reasons of
terminating the contract, e.g., the customer lapses the policy.

We first consider the case that the maturity is Tz . Under the fee
structure (2.3) and (2.4), the insurer is interested in the expectation
of the total time of charging fees:

E
 Tz

0
1{Ut<b}dt


=


∞

0
E
 t

0
1{Us<b}ds


fTz (t)dt, (2.7)

where fTz (t) denotes the probability density function of Tz .

Remark 2.1. To evaluate (2.7), the value of α in (2.5) is required
to be specified first. In principle, the value of α is determined by
risk neutral pricing rule for somemartingalemeasure. Here, we are
more interested in obtaining the probability characteristic of time
of deducting fee. Therefore, in this paper, we assume that the pa-
rameter α is exogenous and focus on the calculation of (2.7) with
given α.

From Ko and Ng (2007) or Dufresne (2007), we obtain the fol-
lowing result: in the space of all probability distribution on the
positive axis, the subset of linear combinations of exponential dis-
tributions is (weakly) dense. Therefore, we can approximate fTz (t)
by


i cifTi(t), where fTi(t) is the density function for some expo-
nential distributions. Hence, the problem of calculating (2.7) re-
duces to compute the following expectation:

E
 τ

0
1{Ut<b}dt


, (2.8)

where τ is an exponential random variable which is independent
of the process U .

For a contract with maturity date T , we first note that (2.8) is
related to the Laplace transform of E

 T
0 1{Us<b}ds


. Therefore, if

the contract expires at a fixed time T , the total time of deducting
fees can also be obtained from (2.8) through taking inverse Laplace
transform for instance. In addition, if the maturity is min{Tz, T },
then we have

E
 min{Tz ,T }

0
1{Us<b}ds


= E

 Tz

0
1{Us<b}ds1{Tz<T }


+ E

 T

0
1{Us<b}ds1{Tz≥T }


= P(Tz < T )


+∞

0
E
 t

0
1{Us<b}ds


gTz |Tz<T (t)dt

+ P(Tz ≥ T )E
 T

0
1{Us<b}ds


, (2.9)

where gTz |Tz<T (t) is the conditional density function of Tz on the
event of {Tz < T }. Similar to the above, we can use linear com-
binations of exponential distributions to approximate the density
function gTz |Tz<T (t). Hence, the computation of the first termon the
right-hand side of (2.9) also reduces to calculate (2.8).

In short, to calculate the total time of deducting fees for a gen-
eral VA contract, themost important quantity is (2.8). In this paper,
we assume that the density function of τ in (2.8) is given by

νe−νt , t > 0, (2.10)
where ν > 0 is a constant. Of course, it is very difficult (or even
impossible) to calculate (2.8) for arbitrary pdf fZ (z). In this paper,
we assume that fZ (z) is given by

fZ (z) =

m
i=1

piηie−ηiz1{z>0} +

n
j=1

qjϑjeϑjz1{z<0}, (2.11)

where pi > 0, ηi > 0 for all i = 1, . . . ,m; qj > 0, ϑj > 0 for all
j = 1, . . . , n;

m
i=1 pi +

n
j=1 qj = 1, η1 < η2 < · · · < ηm and

ϑ1 < ϑ2 < · · · < ϑn.

Remark 2.2. The process X defined by (2.1) and (2.11) is called
hyper-exponential jump diffusion process (HEP). The HEP has sev-
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