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A B S T R A C T

In this note the Hybrid Flowshop Scheduling Problem with Multiprocessor Tasks is addressed. The objective
function to be minimized is the maximum completion time or the makespan. The main purpose of this note is to
pinpoint an inaccuracy contained in a recent paper while developing a lower bound (Chou: IJPE, 141:137–145 )
and to propose some valid lower bounds.

1. Introduction

The Hybrid Flowshop Scheduling Problem with Multiprocessor
Tasks (HFSMT) is stated as follows. A set J n= {1, 2,…, } of n jobs has
to be treated on s production centers Z Z Z, ,…, s1 2 in that order. The
processing time of job j J∈ on center Zk k s( = 1,…, ) is pkj. Each stage
Zk is composed of mk parallel and identical machines. The processing
of a job j J∈ in center Zk k s( = 1,…, ) requires seizkj simultaneous
machines. During the processing phase the following constraints
should be respected. Each machine can process at most one job at
any time and the preemption is not allowed. All jobs and all machines
are available from time zero. In addition, all the processing times pij
and the required machines sizeij (i s= 1,…, and j J∈ ) are integer and
deterministic. The buffer capacity between the centers is assumed to be
infinite. The objective is to provide a feasible schedule that minimizes
the maximum completion time, or makespan. When sizeij =1(i s= 1,…,
and j J∈ ) the HFSMT is reduced to the hybrid flow shop scheduling
problem which is an interesting and challenging problem (Omid and
Rasaratnam, 2016).

During the last decade, the (HFSMT) have been investigated in the
scheduling literature. For a comprehensive surveys the reader is
referred to Ribas et al. (2010) and Ruiz and Vázquez-Rodríguez
(2010). Recent contributions are the papers of Lahimer et al. (2011),
Lahimer et al. (2013), Chou (2013) and Lin et al. (2013).

In this note, we proof that a lower bound recently proposed in Chou
(2013) is incorrect and we present a new valid lower bounds.

2. Lower bounds for the Hybrid Flowshop Scheduling
Problem with Multiprocessor Tasks

2.1. The lower bound of Chou (2013)

In this lower bound the set of jobs J for each center Zi i s( = 1,…, ) is
partitioned into the following subsets:

• E =i j J size m{ ∈ : = }ij i

• F =i
⎧⎨⎩

⎫⎬⎭j J size m size m∈ : > 1
2

and = − 1ij i ij i

• G =i
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⎫⎬⎭j J m size m∈ : 1
2

< < − 1i ij i

• H =i
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2ij i

• Q =i j J size{ ∈ : = 1}ij

In addition, the following notations are introduced.
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In (Chou, 2013), Chou claims that:
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is a lower bound for the HFSMT problem.
Actually, SBC is not a valid lower bound. This can be proofed by the

following example.

Example 1. Consider the instance with n s= 9, = 2, and m m= = 61 2 .
The processing times pij and the required machines sizeij (i s= 1,…,
and j J∈ ) are displayed in Table 1.

the obtained subsets are:
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• E =1 E = {1}2 .

• F =1 F = {2}2 .

• G =1 G = {3}2 .

• H =1 H = {4}2 .

• L =1 L = {5}2 .

• Q =1 Q = {6, 7, 8, 9}2 .

In addition, for i = 1, we have:

• bp
m
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6
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Hence bp (3) = 9 + 2 + 1.5 = 12.51 . Furthermore, we have

• pmin (∑ ) = 0j l j=1 ,.., 9 =1
0
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• pmin (∑ ) = 0j l j=1 ,.., 9 =2
2

1

For i = 2, the same calculation gives: bp (1) = 122 and bp (3) = 12.52 .
Thus, we get

SB = max{0 + max(12, 12.5) + 3, 3 + max(12, 12.5) + 0} = 15.5C

However, we have a feasible schedule, having a makespan equal to 15,
which is depicted in Fig. 1.

The mistake for the lower bound of Chou (2013) is contained in the
expression of bp (3)i (i s= 1,…, ). Indeed, omitting bp (3)i (i s= 1,…, )
from SBC results in the following valid lower bound:
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More explicitly and according to Chou (2013) , For each center Zi
i s( = 1,…, ) we have:

• The jobs in Qi = j J size{ ∈ : = 1}ij are processed simultaneously with

Table 1
Data of Example 1.

j 1 2 3 4 5 6 7 8 9

p1j 3 3 3 3 3 3 3 3 3
size1j 6 5 4 3 2 1 1 1 1
p2j 3 3 3 3 3 3 3 3 3
size2j 6 5 4 3 2 1 1 1 1
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Fig. 1. Gantt chart of a feasible schedule having a makespan equal to 15.

Table 2
Data of Example 3 LB LB( > )OL1 .

j 1 2 3 4 5 6 7

p1j 1 1 1 1 1 1 6
size1j 5 3 1 1 1 1 1
p2j 1 1 1 1 1 1 6
size2j 5 3 1 1 1 1 1

Table 3
Data of Example 4 LB LB( < )OL1 .

j 1 2 3 4 5 6 7

p1j 1 1 1 1 1 1 1
size1j 4 3 1 1 1 1 1
p2j 1 1 1 1 1 1 1
size2j 4 3 1 1 1 1 1

Table 4
Data of Example 6 LB LB( > )OL2 .

j 1 2 3 4 5 6 7 8 9 10

p1j 3 3 3 3 1 1 1 1 1 1
size1j 4 3 3 2 1 1 1 1 1 1
p2j 3 3 3 3 1 1 1 1 1 1
size2j 4 3 3 2 1 1 1 1 1 1

Table 5
Data of Example 7 LB LB( < )OL2 .

j 1 2 3 4 5 6 7 8 9 10

p1j 3 3 3 3 1 1 1 1 1 1
size1j 2 2 2 2 1 1 1 1 1 1
p2j 3 3 3 3 1 1 1 1 1 1
size2j 2 2 2 2 1 1 1 1 1 1
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