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a b s t r a c t

We study a two identical parallel-machine scheduling problem in which one machine is available to
process jobs in a limited time interval while the other machine is always available over the scheduling
horizon. The objective is to maximize the number of on-time jobs. As the problem is NP-hard, we
develop a heuristic to tackle it by incorporating the backward adjusting and two-step look-ahead
strategies into some existing heuristics for similar problems without the machine availability constraint.
We show that our heuristic has a worst-case ratio bound of 4/3 and the bound is tight.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider two identical parallel-machine scheduling to max-
imize the number of on-time jobs, where one machine is continu-
ously available over the scheduling horizon while the other machine
can only process jobs within a pre-determined time interval. The
problem captures the common production scenario in which a
manufacturing firm receives a pool of orders (jobs), each of which
has a due date. The firm can either process a job in-house or
subcontract it to another firm for processing. However, since the
subcontractor has other order commitments, it can only offer an
available timewindow to process the jobs of the firm. If both the firm
and subcontractor use similar production technologies to process
jobs, then they can be approximately considered as two plants with
the same processing speed, i.e., two identical parallel machines.
Although we assume that each order requires the same processing
time on either the in-house machine or subcontractor's machine,
different orders have different processing times due to their hetero-
geneity. At the beginning of the scheduling period, the firm needs to
decide the orders to process in-house and to subcontract out with a
view to maximizing the number of on-time jobs.

The model can be easily extended to the situation that the firm
needs to pay a booking cost to the subcontractor for using the given
time window. On the other hand, it is reasonable to assume that the
subcontractor is willing to follow the job processing schedule specified
by the firm when the job setup times are negligible or the subcon-
tractor only simply sells its machine time to the firm.

In this paper we first consider applying a few existing heuristics
for similar problems without the machine availability constraint to
solve our problem. We find that they admit larger worst-case ratio
bounds for our problem than their original problems. We then
design a heuristic by adapting the existing heuristics and show
that it admits a better and tight worst-case ratio bound of 4/3.

The remainder of the paper is organized as follows: In Section 2
we give a brief literature review. In Section 3 we formally describe
the problem under study. In Section 4 we derive the worst-case
ratio bounds of applying some existing heuristics for similar
problems without the machine availability constraint to solve
our problem. In Section 5 we design a heuristic by adapting the
existing heuristics. In Section 6 we analyze the worst-case ratio
bound of our proposed heuristic. We conclude the paper and
suggest topics for future research in Section 7.

2. Literature review

Using the standard three-field notation for describing scheduling
problems, with an extension to indicate the availability interval on one
machine, we denote the problem under study as P2jintervalj∑ð1�UjÞ,
where P2 represents the two identical parallel-machine environment,
interval denotes that job processing is limited within an available time
interval on one machine, Uj¼0 and 1 if job Jj is on-time and late,
respectively, and “∑ð1�UjÞ” denotes the number of on-time jobs to be
maximized. The problem is an extended version of the classical
scheduling problem P2jj∑ð1�UjÞ, in which both machines are avail-
able to process jobs over the scheduling horizon.

Leung and Yu (1994) show that the problem P2jj∑ð1�UjÞ is
NP-hard and propose a heuristic (denoted as the L–Y heuristic)
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with a worst-case ratio bound of 4/3. Bar-Noy et al. (2001) develop
solution algorithms for variants of the more general problem
Rjrjj∑wjð1�UjÞ, where R denotes the unrelated parallel-machine
environment, and rj and wj are the release time and weight of job Jj,
respectively. They develop a heuristic algorithm with a worst-case
ratio bound of 2þ

ffiffiffi
3

p
for arbitrary weights. They also provide a

greedy algorithm (denoted as the Bar-Noy et al. heuristic) with a
worst-case ratio bound of 2 for the case of identical weights. For the
special case of P2jj∑ð1�UjÞ, the Bar-Noy et al. heuristic admits a
worst-case ratio bound of 9/5, which is inferior to the 4/3 bound of
the L–Y heuristic. For the problem Q2jj∑ð1�UjÞ, where Q2 repre-
sents the uniform parallel-machine environment, Koulamas and
Kyparisis (2006) develop a heuristic (denoted as the K–K heuristic)
by embedding a look-ahead feature in the L–Y heuristic. They prove
that their heuristic has the tight worst-case ratio bound of 3/2. In
addition, Leung (2004) develop heuristics for online versions of the
problems P2jj∑ð1�UjÞ and Q2jj∑ð1�UjÞ, and prove that they have
worst-case ratio bounds of 2ð1þ1=

ffiffiffi
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p
Þ and 1þ1=s, respectively,

where s (4 1) represents the speed ratio of the fast machine over
the slow machine. In the m parallel-machine environment, Ho and
Chang (1995) propose heuristics for the problem Pmjj∑ð1�UjÞ and
conduct experiments to test their computing performance.
M’Hallah and Bulfin (2005) propose a branch-and-bound algorithm
to solve the problem Pmjj∑wjð1�UjÞ. These studies involve both
the job acceptance and scheduling decisions at the same time. For
detailed research results on this topic, the reader is referred to the
papers of Oğuz et al. (2010) and Wang et al. (2013a, 2013b), and the
survey of Slotnick (2011).

In the two parallel-machine environment, the aforementioned
offline heuristics can be straightforwardly applied to deal with the
problem P2jintervalj∑ð1�UjÞ. However, we show in the next
section that these heuristics admit larger worst-case ratio bounds
for our problem than their original problems. In this paper we
develop a heuristic for solving the problem P2jintervalj∑ð1�UjÞ
by adapting the L–Y heuristic (and the K–K heuristic) and show
that it has a better worst-case ratio bound than the two heuristics.

Another line of research related to our study concerns identical
parallel-machine scheduling with machine maintenance con-
straints, which are characterized as unavailable time intervals on
the machines due to preventive maintenance activities. Most
results in this research stream focus on the problem to minimize
the makespan or the total (weighted) completion time under the
assumption that all the jobs are accepted for processing.

For the objective of minimizing the makespan, when the jobs are
resumable, i.e., the processing of a job interrupted by an unavailable
interval of a machine can continue its processing after the machine
becomes available again, Lee (1996) considers identical parallel-
machine scheduling under the assumption that there is at least one
machine that is always available. He shows that the worst-case ratio
bounds of list scheduling and longest processing time (LPT) sche-
duling are m and (mþ1)/2, respectively, where m is the number of
identical parallel machines. Hwang and Chang (1998), and Hwang
et al. (2005) analyze the worst-case ratio bounds of LPT scheduling
for the problem where each machine may have an unavailable
interval. The former show that the tight worst-case ratio bound is
2 if the number of simultaneous unavailable machines is no more
than m/2. The latter generalize this result and show that a worst-
case ratio bound is 1þ⌈m=ðm�kÞ⌉=2, where k is the maximum
number of simultaneous unavailable machines and ⌈x⌉ denotes the
smallest integer that is no less than x. For the objective of
minimizing the total completion time, Lee and Liman (1993)
consider two identical parallel-machine scheduling where one
machine becomes unavailable from a particular instant and the
other machine is always available. They propose a shortest proces-
sing time (SPT)-based heuristic with the tight worst-case ratio
bound of 3/2. Liao et al. (2009) propose a branch-and-bound

algorithm to treat the problem. Tan et al. (2011) considerm identical
parallel-machine scheduling where each of the first k machines has
unavailable intervals, while the other m�k machines are always
available, where 1rkrm. They prove that SPT scheduling has a
worst-case ratio bound of 1þðm�1Þ=ðm�kÞ when kom. If there is
exactly one unavailable interval on each of the first k machines and
the unavailable intervals do not overlap, then SPT scheduling has a
worst-case ratio bound of 1þðk�1Þ=ðm�1Þ. For the objective of
minimizing the total weighted completion time, Zhao et al. (2011)
develop a fully polynomial-time approximation scheme (FPTAS)
for m identical parallel-machine scheduling under the assumptions
that m is a fixed number, only one machine is unavailable in
a fixed interval, and the other machines are always available. For
detailed research results in this area, the reader is referred to the
surveys provided by Sanlaville and Schmidt (1998), Schmidt (2000),
and Ma et al. (2010). However, to the best of our knowledge, no
research has considered the problem to maximize the number of
on-time jobs.

3. Problem description

We formally describe the problem P2jintervalj∑ð1�UjÞ as
follows: There is a set of n jobs N¼ fJ1; J2;⋯; Jng that are available
for processing at time zero. There are two identical parallel
machines M1 and M2, where M1, as the in-house machine, is
always available for processing jobs from the beginning of the
scheduling horizon (time zero) while M2, as the subcontractor's
machine, can only process jobs within a given time interval
½t0; t0þΔ�. Associated with each job Jj are its processing time pj
and due date dj. We assume that preemption is not allowed, i.e.,
processing a job on the machine cannot be interrupted until it is
finished. A job Jj is late if it is completed after its due date dj,
denoted as Uj ¼ 1; otherwise, the job Jj is on time, denoted as
Uj ¼ 0. The decisions are to determine the jobs to accept for
processing and to schedule the accepted jobs on either machine
so as to maximize the number of on-time jobs.

The problem is NP-hard because it is an extended version of the
NP-hard problem P2jj∑ð1�UjÞ. Similar to Leung and Yu (1994), we
provide the following dynamic programming algorithm to solve
the problem in pseudo-polynomial time. Re-index the jobs
J1; J2;⋯; Jn such that d1rd2r⋯rdn. Let Fðt1; t2; jÞ denote the
maximum number of on-time jobs in fJ1; J2;⋯; Jjg where the
completion times of the last jobs on M1 and M2 are t1 and t2,
respectively. Given the boundary conditions: Fð0; t0;0Þ ¼ 0,
Fðt1; t2;0Þ ¼ �1 for 0ot1rdn or t0ot2r min ft0þΔ; dng, and
Fðt1; t2; jÞ ¼ �1 for t1o0 or t2ot0, the forward current relation is

Fðt1; t2; jÞ ¼ max

Fðt1�pj; t2; j�1Þþ1 if 0ot1rdj
Fðt1; t2�pj; j�1Þþ1 if t0ot2r min ft0þΔ;djg
Fðt1; t2; j�1Þ

8><
>:

The optimal solution is the largest value of Fðt1; t2;nÞ for all
0ot1rdn and t0ot2r min ft0þΔ; dng. The dynamic program-
ming algorithm is pseudo-polynomial as its time complexity is
Oðnd2nÞ. So the problem P2jintervalj∑ð1�UjÞ is ordinary NP-hard
and it is justified to develop a fast heuristic to tackle it.

The computational performance of a heuristic is often mea-
sured by its worst-case ratio bound. Let nA and nO denote the
numbers of on-time jobs produced by a heuristic and an optimal
algorithm, respectively. For the problem under study, we define
the worst-case ratio bound ρ of a heuristic as the smallest number
such that nO=nArρ holds for any problem instance. If there exists
at least one problem instance such that nO=nA ¼ ρ, then we say that
the worst-case ratio bound of the heuristic is tight.
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