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a b s t r a c t

Many practical problems require nonparametric estimates of regression functions, and local polynomial
regression has emerged as a leading approach. In applied settings practitioners often adopt either the
local constant or local linear variants, or choose the order of the local polynomial to be slightly greater
than the order of the maximum derivative estimate required. But such ad hoc determination of the
polynomial order may not be optimal in general, while the joint determination of the polynomial order
and bandwidth presents some interesting theoretical and practical challenges. In this paper we propose
a data-driven approach towards the joint determination of the polynomial order and bandwidth, provide
theoretical underpinnings, and demonstrate that improvements in both finite-sample efficiency and rates
of convergence can thereby be obtained. In the case where the true data generating process (DGP) is in
fact a polynomial whose order does not depend on the sample size, our method is capable of attaining
the

√
n rate often associated with correctly specified parametric models, while the estimator is shown

to be uniformly consistent for a much larger class of DGPs. Theoretical underpinnings are provided and
finite-sample properties are examined.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric regression plays a key role in applied statistical
analysis. Locally weighted polynomial regression (Fan (1992);
Ruppert and Wand (1994)) has proven extremely popular and
is the most studied and widely used nonparametric regression
method. The seminal work of Nadaraya (1965) andWatson (1964)
examined the ‘local constant’ variant (which is a limiting case of the
local polynomial estimator with polynomial order p = 0), while
the local linear variant (p = 1) is dominant in applied settings as
it possesses one of the best boundary correctionmethods available
while it is alsominimax efficient. Practitioners sometimes consider
polynomials of order p > 1, but typically this is only done when
higher order derivative estimates are required.1 There exists work
on nonparametric regression estimators of very high order (see
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1 Fan and Gijbels (1996, page 59) write ‘‘Another issue in local polynomial fitting
is the choice of the order of the local polynomial. Since the modelling bias is
primarily controlled by the bandwidth, this issue is less crucial however. [. . . ] Since
the bandwidth is used to control themodelling complexity, we recommend the use
of the lowest odd order, i.e. p = ν+ 1, or occasionally p = ν+ 3’’. (ν is the order of
the derivative required). See also Fan and Gijbels (1995).

e.g. Golubev et al. (1996); Lepski and Levit (1998)), but it involves
usingmethods that are designed specifically for the very high order
case, and, unlike local polynomial techniques, are unattractive in
lower order settings. There are also ingenious, minimax optimal
approaches to choosing smoothing parameters (see e.g. Lepski
et al. (1997)), potentially useful in high order settings. However,
they too are not attractive in practice, and for this reason are not
used to analyse real data. In reality a practitioner does not know
whether a low or high order method is going to be required, and
so finds it attractive to use a relatively conventional, tried-and-
tested construction that is sufficiently flexible to address both low
and high order cases. The techniques suggested in this paper are of
that type; they employ local polynomial methods to construct the
estimator, and cross-validation to choose the bandwidth.

From this perspective, the order of the local polynomial used
in many applications appears to be somewhat ad hoc. However,
the order of the polynomial can have a noticeable impact on the
quality of the resulting approximation,while the appropriate order
will in general depend on the underlying DGP, as will be seen. But
how to best tailor the order of the polynomial to the data at hand
remains an open question. In this paper we propose using delete-
one cross-validation for jointly determining the bandwidth h and
polynomial order p. The rest of this paper proceeds as follows:
Section 2 presents the proposed approach, Section 3 provides
theoretical underpinnings, Section 4 considers a series of Monte
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Carlo simulations designed to assess the finite-sample behaviour of
the proposed approach, while Section 5 presents some concluding
remarks.

2. Methodology

2.1. Model

Data pairs (Xi, Yi) are assumed to be generated by the model

Yi = g(Xi)+ ϵi, (2.1)

where X1, . . . , Xn are independent and identically distributed as
X , with density fX supported on a compact interval I, and the
experimental errors ϵi are independent and identically distributed
with zero mean, independent too of the Xis. The case where ϵi =

σ(Xi) ϵ
′

i , for a bounded function σ and independent variables ϵ′

i
with zero mean, independent of the Xis, can be treated similarly.

2.2. Methodology for function estimation

To estimate g , let c = (c0, . . . , cp)T be a (p + 1)-vector, let
q(x | c) = c0 + c1 x + · · · + cp xp be a polynomial of degree p,
and consider the problem of minimising the sum of squares

S(c) =
1
nh

n
i=1


Yi − q

x − Xi

h

 c2
K
x − Xi

h


,

where K is a kernel function and h is a bandwidth. Now,
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=


V (x)− M(x) cj, (2.2)

where V = (V0, . . . , Vp)
T is a (p+1)-vector, M = (mjk) is a (p+1)

× (p + 1)matrix,

Vj(x) =
1
nh

n
i=1
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j
K
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, (2.3)

mjk(x) =
1
nh

n
i=1

x − Xi

h

j+k
K
x − Xi

h


. (2.4)

Equating to zero the derivative at (2.2), and solving for c , we obtain:

ĉ(x) = (ĉ0(x), . . . , ĉp(x))T = M(x)−1 V (x). (2.5)

Our estimator of g is

ĝ(x) = ĉ0(x). (2.6)

2.3. Cross-validation

The cross-validation ‘‘estimator’’ of integrated squared error
weighted by the density fX ,

ISE(h, p) =


I

(ĝ − g)2 fX ,

is given by

CV(h, p) =
1
n

n
i=1

{Yi − ĝ−i(Xi)}
2, (2.7)

where ĝ−i denotes the version of ĝ , defined as at (2.6), when the
data pair (Xi, Yi) is removed from the sample. In fact,

CV(h, p) =
1
n

n
i=1

{g(Xi)− ĝ−i(Xi)}
2
+

2
n

n
i=1

{g(Xi)− ĝ−i(Xi)} ϵi

+
1
n

n
i=1

ϵ2i , (2.8)

where the first term on the right-hand side of (2.8) is a good
approximation to ISE(h, p), the second term is generally negligibly
small, and the third term does not depend on h or p and converges
to τ 2 ≡ E{σ(X)2} where the function σ is as in Section 2.1.
Therefore it is reasonable to view CV(h, p) as an approximation
to ISE(h, p)+ τ 2.

We proceed by minimising (2.7) jointly with respect to h and p,
and then use the resulting values for constructing the estimator of
g given in (2.6) (particulars of this mixed integer optimisation are
described in Section 4).

3. Theoretical properties

3.1. Overview

Since we are treating high order local polynomial methods,
where the degree of the polynomial diverges with sample size,
then in technical arguments wemust compute inverses of high or-
der matrices of covariance type. These are Hankel matrices, and so
in Section 3.2we introduce properties of such quantities, governed
by the particular kernels we shall use. The properties of smallest
eigenvalues discussed in Section 3.2 will prove invaluable when
assessing expressions involving inverses of Hankel matrices, and,
as discussed in Section 3.4, theymotivate our regularity conditions.
The components of our Hankel matrices depend to a large extent
on moments of distributions whose respective densities are ker-
nel functions, and so in Section 3.3 we develop basic properties of
thosemoments. (We discuss the properties there, rather than later
in the paper, since again they are needed tomotivate our regularity
conditions, given in Section 3.4.) In Sections 3.4 and 3.5, respec-
tively, we describe theoretical properties of function estimators
and cross-validation in high order settings, and in Section 3.6 we
discuss these properties together, describing their ramifications.

3.2. Hankel matrices

Let Mp = Mp(K) denote the (p + 1) × (p + 1) matrix with
(j, k)th element


uj+k K(u) du, for 0 ≤ j, k ≤ p. Such matrices

are distinctly patterned (in particular, the components down any
anti-diagonal are identical), and are in the class of Hankelmatrices.
There is a literature on properties of the smallest eigenvalues of
Hankel matrices, and we summarise some of it below.

In what follows, if an and bn are sequences of positive numbers,
we write an ∼ bn to mean that the ratio cn = an/bn converges to
one as n → ∞, and we write an ≍ bn to mean that cn is bounded
away from zero and infinity as n → ∞.

Let evp = evp(K) denote the smallest eigenvalue of Mp. If K
is bounded, symmetric and has support equal to [−1, 1], and if
K(u) ≥ C (1 − u2)s for constants C > 0 and s ≥ 0, then a result
of Widom and Wilf (1966) implies that

evp(K) ∼ B p1/2 exp

−


1 + 21/2 p (3.9)

where B > 0. If K is the standard normal density,

evp(K) ∼ B p1/4 exp

−23/2 p1/2


(3.10)

(Szegö (1936)), where B = 213/4 π3/2 e.
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