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a b s t r a c t

The Harmonic Balance method is an attractive solution for computing periodic responses and can be an
alternative to time domain methods, at a reduced computational cost. The current paper investigates
using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic
Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate
variability and is validated against Monte Carlo analysis. Results show the potential of the approach
for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical
and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As design complexity increases, new materials and novel tech-
nologies are introduced to new airframes, empirical methods
become increasingly difficult to apply, hence a clear need for phys-
ics based modelling tools has emerged. Aeroelasticity in particular
is a good illustration of this trend and a need for physics based
modelling tools has been identified by Noll et al. [1]. Furthermore,
predicting the aeroelastic stability of an aircraft should also iden-
tify the consequences of variability or uncertainty in model param-
eters, as discussed by Pettit [2]. Marques et al. demonstrated the
significant impact of structural variability on transonic flutter pre-
dictions [3,4]. When nonlinearities are present, the amplitude of
oscillations can become limited and limit cycle oscillations are
observed. This is a problem of considerable practical interest and
is well documented for in-service aircraft [5,6]. When nonlineari-
ties are de-stabilizing (softening) a subcritical limit-cycle exists.
As discussed by Stanford and Beran [7], unstable LCOs can occur
below the flutter speed and lead to a hysteretic phenomenon. This
type of instability is extremely undesirable because as the flutter
speed is reached, the amplitude increases suddenly and signifi-
cantly, as the speed drops below the flutter point, the LCO will
persist.

The presence of nonlinearities, either structural or aerody-
namic, poses additional challenges both in terms of complexity

and computational resources, these requirements can be exacer-
bated by the need to quantify the uncertainty due to unknown or
variable parameters. Hence, several efforts have been made to
address both these issues.

Reduced order modelling is a technique widely utilised to ease
the computational burden associated with high-fidelity unsteady
simulations, required to capture nonlinear effects. Proper orthogo-
nal decomposition (POD) is commonly used to compress high
order data [8,9] and has been implemented in a reliability-based
design optimisation framework (RBDO) for aeroelastic problems
[10]. Volterra series can be used to model nonlinear responses with
historic consideration, hence suitable for transient problems [11].
Recently, recurrent artificial neural networks (ANN), were applied
to replicate an input–output relationship and can be used for non-
linear problems, such as LCOs [12], provided the model is suffi-
ciently trained. System identification techniques using describing
functions are another alternative to capture unsteady aerodynamic
effects in dynamic aeroelastic problems [13,14]. The common lim-
itation of the methods mentioned above is the sacrifice of physical
accuracy and parameter space associated with the reduction pro-
cess, rendering the ROM unreliable outside the limits of the origi-
nal data. The application of ROMs to uncertainty quantification
(UQ) problems is in principle possible, however, the associated
increase in the parameter space would require additional compu-
tational resources to generate suitable ROMs.

Two promising approaches which do not compromise the
underlying physics of the oscillatory behaviour and have been
applied to LCOs are: model reduction techniques based on the
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centre manifold theorem [15] and frequency-based techniques
(finite-difference cyclic methods [16], spectral elements in time
[17] and Harmonic Balance (HB) methods [6,18,19]). Although
the HB method employs global basis functions resulting in system
matrices with no sparsity, it offers better temporal convergence
than spectral element and cyclic methods [20]. Additionally,
convergence problems can occur for the spectral element method
during the transition between unstable and stable branches of a
subcritical LCO [7], the HB method does not encounter this prob-
lem. An overview of different variations of the Harmonic Balance
method, such as high-dimensional, incremental, or elliptic HB
methods is given by Dimitriadis [21].

The growth in complexity associated with the classical HB
method for higher-order nonlinear terms render it inefficient for
most practical problems [18]. The High-Dimensional Harmonic
Balance (HDHB) method can simplify the treatment of nonlineari-
ties thus making it scalable for more complex problems and can
subsequently offer over one order of magnitude reduction in cost
[22]. The benefits of the Harmonic Balance approach deteriorate
as the number of harmonics retained to solve the problem increase
[23].

As for flutter, LCOs are sensitive to parametric variability, which
makes the use of stochastic tools attractive to this problem. Beran
et al. [24] applied several UQ techniques to an aerofoil LCO prob-
lem, where variability was propagated using time domain and cyc-
lic methods. To overcome the difficulties with applying stochastic
methods such as Probabilistic Collocation to long time integration
problem, Witteveen et al. [25], re-cast LCO time domain results as a
function of the resultant frequency. More recently, Le Meitour et al.
[26] used a non-intrusive, adaptive formulation of a generalised

Polynomial Chaos Expansion (PCE) approach to 2-dimensional
LCO problems, the adaptive formulation allowed for the PCE
method to give reliable answers in the presence of discontinuities
such as supercritical bifurcations.

In this work, an HDHB formulation is exploited to determine the
LCO conditions without incurring the costs of time-accurate simu-
lations; the paper then investigates the practicality of using the
HDHB approach to propagate parametric variability using a Non-
Intrusive Polynomial Chaos (NIPC) approach. The paper will first
summarise the HDHB formulation, this is followed by the descrip-
tion of the probabilistic approach based on non-intrusive PCE. The
impact of variability on the responses amplitudes and motion fre-
quency is assessed and compared against Monte Carlo (MC) results
(using both time domain and HDHB methods).

2. Harmonic Balance formulation

The HB formulation used in this work was proposed by Hall
et al. [22] for time-periodic flow problems, this methodology was
adapted to nonlinear dynamical systems by Liu et al. [27] and is
summarised next. Consider a dynamic system with a nonlinearity
in stiffness whose behaviour can be described using a simple
equation of motion given by:

M€xþ C _xþ Kxþ KnlðxÞ ¼ Fðx; _x; €x; tÞ ð1Þ

Matrices M; C and K describe the mass, damping and linear stiffness
properties of the system respectively and KnlðxÞ is the nonlinear
component of the stiffness restoring force. The external force, F
can be a function of the motion of the system and/or time. Here

Nomenclature

Roman symbols
a polynomial coefficients for polynomial chaos expansions
b semi-chord
C structural damping matrix
CL lift coefficient
CM pitching moment coefficient
E time/frequency domain transformation matrix
F generalised external force matrix
J Newton–Raphson system Jacobian
k linear stiffness coefficient
K structural linear stiffness matrix
m structural mass
M number of independent continuous uncertain parameters
M structural mass matrix
nl Goland wing, number of lag variables in rational approx-

imation
NH number of harmonics
q vector of modal deflections
qai

decomposed generalised aerodynamic vectors, i ¼ 1; . . . ;nl

Q solution vector
ra radius of gyration
Rn Newton–Raphson system residual vector at iteration n
Sn Newton–Raphson solution vector at iteration n
t time
V freestream velocity
wi Wagner variables, i ¼ 1;2;3;4
x solution
xa distance between mass centre and elastic axis
x̂i Fourier coefficient of displacement, i ¼ 1; . . . ;NH

Greek symbols
a aerofoil pitch displacement, angle-of-attack
b cubic stiffness coefficient

c pentic stiffness coefficient
C polynomial chaos basis functions
�i constants in Wagner’s function, i ¼ 1;2
u polynomial chaos random variable
f damping ratio
g Goland wing, term from rational approximation of gener-

alised aerodynamic forces, i ¼ 1; . . . ;nl

k Newton–Raphson relaxation parameter
l aerofoil air mass ratio
n aerofoil non-dimensionalised plunge displacement
q air density
U truncated matrix of eigenvectors
h uncertain parameters
x fundamental solution frequency
�x aerofoil, frequency ratio, �x ¼ xn=xa

Subscripts, superscripts and oversets
ðÞai

decomposed generalised aerodynamic vectors
ðÞnl nonlinear force
ðÞry rotation about y axis dof
ðÞwi

Wagner function representative aerodynamic variables
ðÞx Duffing oscillator displacement
ðÞz translation about z axis dof
ðÞa aerofoil pitch dof
ðÞn aerofoil plunge dof
ðÞ/ quantity in modal domain
ðÞ0 initial condition (when specified)
ðÞ� non-dimensionalised quantity
^ðÞ Fourier coefficient
~ðÞ equally spaced time domain solution
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