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A new truly-mixed finite element for the analysis of viscoelastic beams is presented that is based on the
additive decomposition of the bending moment in a viscoelastic and a purely elastic contribution.
Bending moments are the primary variables that belong to H*(0, ¢) whereas the kinematic variables (that
are the velocities and not the displacements as usual) are globally discontinuous and elementwise linear.
As for the peculiarities of the proposed finite element, results from relaxation and creep numerical tests
are presented in much detail and a quadratic convergence assessed for all the variables involved. In the
second part of the paper, a fast approach to structural (sizing) optimization, set as a topology optimiza-
tion problem, of such viscoelastic beams is presented in the presence of time-dependent objective func-
tions. Within a gradient-based minimization scheme that is solved via the method of moving asymptotes
(Svanberg, 1987), a dual sensitivity analysis approach is derived and representative numerical results
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presented and discussed in much detail.
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1. Introduction

Viscoelasticity is a constitutive feature of materials that finds
applications in several areas such as structural engineering (con-
crete modeling), biomedics (soft tissues) and also synthetic mate-
rials and polymers fabrication [2].

From a modeling viewpoint, the most classic approach to vis-
coelasticity relies on the hereditary integral formulation that is
based on the interpretation of viscoelastic materials as materials
with memory: the current stress may be computed as a time inte-
gral of the strain history [3]. Most times such viscoelastic behavior
is introduced by using a complex definition of the Young modulus
where the imaginary part is responsible for the viscous part of the
response, see [4,5] among others. A different approach has been
used in [6] that models the response of 2D viscoelastic media using
a mixed finite element framework that neither adopts the heredi-
tary formulation nor the complex stiffness approach. It is con-
versely based on the additive decomposition of the total stress
into a purely elastic and a viscoelastic contribution and, as to kine-
matics, on the adoption of the velocity as opposed to the displace-
ment that is by far the most classical choice. The main advantage of
such an approach is that the resulting governing equations neither
exhibit complex coefficients nor call for the computation of inte-
grals of hereditary nature, say of convolution type, that may lead
to cumbersome algorithms for the solution. The first objective of
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the present paper is then to propose a fast approach that following
the streamline proposed in [6] allows the computation of the
response of beams made of viscoelastic materials. For simplicity
sake the proposed approach is concerned with the thin (Kirchhoff)
kinematic model.

As to optimal design of viscoleastic materials and structures, a
by no means exhaustive list of appealing contributions is reported
next. Paper [7] is concerned with determining composite materials
layouts capable of exhibiting high damping in a viscoelastic
regime, [5,8] deal with material optimization at the microstruc-
tural level so as to obtain materials and structures of prescribed
(and usually extreme) homogeneized properties, [4] applies a
topology optimization strategy to the design of periodic compos-
ites capable of maximum attenuation of propagating waves, [9]
deals with the optimization of non-classically damped linear
dynamic structures in the presence of harmonic external loads,
which should be considered a peculiarity of the paper as opposed
to most of the existing literature on the subject that deals with
eigenvalue optimization wherein loads are simply neglected. From
the computational standpoint of optimization methods for vis-
coelastic (and more generally time-dependent systems), a crucial
step is represented by the semi-analytic computation of the gradi-
ent of the optimization function as proposed in [10,11]. A similar
approach is proposed in the present paper even though the evolu-
tion of the viscoelastic system is herein governed by a first-order
differential-algebraic equation as opposed to [10,11] that consider
second-order differential equations and this remarkable difference
causes our approach for computing sensitivities to be different
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though inspired by the same philosophy. Such semi-analytic
approach for the computation of the gradient of the objective func-
tion represents one of the key ingredients for the structural (sizing)
optimization method of viscoelastic beams that is presented in the
second part of the paper.

The paper is organized as follows. Section 2 presents the contin-
uous variational formulation of the viscoelastic beam under inves-
tigation whose mixed finite-element space-discretization scheme
is outlined in Section 3. Cubic shape functions are adopted for
the element-wise approximation of the bending moment that
globally belongs to H?(0, /) whereas velocities are element-wise
linear and globally discontinuous. The time-discretization of the
resulting differential-algebraic equation is tackled in Section 4
where the adoption of the two-step algorithm proposed in [12]
and applied in [6] is suggested. The truly-mixed finite-element
approach proposed herein shows some peculiar aspects as to the
imposition of boundary conditions at extreme and/or intermediate
sections of the beam that are elucidated in Section 5. The optimiza-
tion problem is presented in Section 6 along with the algorithm for
the semi-analytic computation of the gradient of the objective
function whereas numerical studies concerning the assessment of
the convergence order of the proposed finite-element approxima-
tion scheme, applications to creep and relaxation tests, and repre-
sentative results concerning the optimization of viscoelastic beams
are left to Section 7.

2. Truly-mixed variational formulation

Truly-mixed variational formulations are based on mixed
stress-displacement approximations of Hellinger-Reissner type
wherein stresses are the regular primary variables whereas dis-
placements play the role of globally discontinuous Lagrange multi-
pliers [13]. One of the peculiarities of the proposed formulation is
that the kinematic variables are not displacements and curvatures
but their time derivatives.

The phenomenological model of Fig. 1 is used to express the
adopted viscoelastic constitutive law in terms of bending moments
M and dual curvatures y that is based on the additive decomposi-
tion of the total bending moment M as

M=M"+M', 1)

where M° and M! are the bending moments that may be attributed
to the viscoelastic component labeled as “0” and the purely elastic
one labeled as “1” in Fig. 1, respectively. The constitutive law of the
viscoelastic phenomenological model therefore reads

oo + s Mo = 0+ 8 = 2
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Fig. 1. Standard solid phenomenological model.

Upon denoting with g the load per unit length, thanks to Eq. (1),
the thin beam equilibrium equation reads
M =M"+M" = —q. 3)

Finally, if v denotes the time derivative of the transverse dis-
placement, i.e. the velocity field, the compatibility equation reads

' =1 (4)

where, as usual, superposed dots and primes indicate time and
space differentiation, respectively.

By equating the right hand sides of Egs. (2) and (4), the time-
derivative of the curvature y may be eliminated and, after some
algebra that includes two integration by parts, one arrives at the
following Hellinger-Reissner truly-mixed formulation:

Find (Mo, M:, v) € (Hy x Hy x L*) such that:
0 v * / * 4 51!
Jo ﬁgMOMo + o E]]*gMOMo + oMy =0
Ji g 4 fy oMy =0
JoMow + JyMiw = — [iqw
VM, € Hy, VM € Hg, Yw € L%,

For future use, with a slight abuse of notations, Eq. (5) is rear-
ranged as follows. Let

Mo
Y=|M, (6)
v

be the vector grouping the unknown fields to be computed,

0
Q= 9 (7
—Joaw
the right-hand side accounting for the external action,
Jo E}_EMOMO 0 0
— ol *
D, = 0 Jo grMiM; 0 )
0 0 0
and
[ Moy 0 oMy
D, = 0 0o fyoM" | ©)
Mg fiMw 0
or, in short,
A; 00 A 0 B
Di=|0 A 0| Do=| 0 0 B|, (10)
0 0 0 B" B" 0

the structural matrices. Eq. (5) may then be formally rewritten as

D, Y(t) + DoY(t) = Q(t). (11)

that turns out to be a Differential-Algebraic Equation (DAE) that
calls for suitable integration algorithms as detailed in a forthcoming
section.

3. Space finite-element discretization

As to the discrete variational formulation, cubic Hermite poly-
nomials ¢;(x),i=1,...,4 are used for the bending moments M

and M~ so as to get global C' continuity, whereas the velocities »
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