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h i g h l i g h t s

• We study approach to the large-time jammed state in RSA.
• MC studies suggest new convergence laws for RSA on patterned 1D substrates.
• The standard assumption of constant small-gap size distribution is not always valid.
• Distribution can vanish linearly at zero gap sizes or have a non-zero size threshold.
• New power-law and exponential times power-law convergences to jamming are identified.
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a b s t r a c t

We study approach to the large-time jammed state of the deposited particles in the model
of random sequential adsorption. The convergence laws are usually derived from the
argument of Pomeau which includes the assumption of the dominance, at large enough
times, of small landing regions into each of which only a single particle can be deposited
without overlapping earlier deposited particles and which, after a certain time are no
longer created by depositions in larger gaps. The second assumption has been that the
size distribution of gaps open for particle-center landing in this large-time small-gaps
regime is finite in the limit of zero gap size. We report numerical Monte Carlo studies of a
recently introducedmodel of random sequential adsorption on patterned one-dimensional
substrates that suggest that the second assumption must be generalized. We argue that a
region exists in the parameter space of the studiedmodel inwhich the gap-size distribution
in the Pomeau large-time regime actually linearly vanishes at zero gap sizes. In another
region, the distribution develops a threshold property, i.e., there are no small gaps below a
certain gap size. We discuss the implications of these findings for new asymptotic power-
law and exponential-modified-by-a-power-law convergences to jamming in irreversible
one-dimensional deposition.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Random sequential adsorption (RSA) is an important dynamical model [1–6] that describes irreversible deposition of
particles or other objects on one-dimensional (1D) linear substrates, on two-dimensional (2D) surfaces, on scaffolds, etc.
The objects are randomly transported to the substrate, but are attached only provided they do not overlap earlier-deposited
objects. Once attached, the objects cannot move on the substrate or detach from it. Recently, there has been a renewed
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Fig. 1. Model showing random sequential adsorption with particle centers only depositing in landing intervals of width w centered at the sites of a 1D
lattice of spacing l. Deposition of an incoming object aimed at a w-interval can be rejected (shown by the crossed arrow) because of overlap, here with two
earlier-deposited objects. An allowed-deposition configuration is shown on the right.

interest in the applications of RSA models [5,7–17] to pre-patterned 1D and 2D substrates. This has been in response to new
experimental capabilities [18–43] to prepare micro- and nano-patterned substrates, including surfaces with well-defined
preferential sites for specific particle attachment. In the studies of RSA one frequently focuses on the density and structure
of the infinite-time jammed-state configuration. In applications, rapidly achieving dense coverage is usually preferred.
Therefore, the asymptotic large-time laws describing approach to the jammed state coverage are of interest. Two standard
prototype convergence lawshave been found in extensively studiedRSAmodels [1–6,9,44,45]. These include fast exponential
vs. slow power-law approach to jamming as a function of time, t. The latter, power-law convergence can be modified by a
power-of-a-logarithm factor [45] for some geometries of the depositing objects.

Recent technological advances have allowed tailoring the landing-site geometry for particle attachment, in addition to the
earlier-studied effects of the particle shape and orientation, in order to control the RSAprocess. Presently, various growth and
deposition processes have been experimentally realized on 1D lines [18–23] or nanotubes [24–26,43], etc., or 2D patterned
surfaces [27–42]. Patterned surfaces find applications in electronics [24–28]; photovoltaics, optics, optoelectronics [29–32];
sensors, microarrays [33–38]; crystal growth and particle assembly [18–23,39].

The 1D RSAmodel provides a convenient test bench for studying the two convergence laws: exponential (fast) or power-
law (slow). Specifically, lattice-aligned deposition gives exponential approach to jamming, whereas continuum, so-called
‘‘car parking’’ 1D deposition yields a power law,∼1/t , and these behaviors can actually be obtained by exact solution, e.g., [6].
More generally, convergence to jamming in 1D RSA can be understood by either directly studying the time-dependence of
the coverage increase or be considering the behavior of the distribution of gaps [44] available for landing of the centers of
particles the deposition attempts of which are not rejected (due to overlap with previously deposited particles). The ‘‘gaps’’
are generally regions of various possible shapes and orientations in more than 1D [45]. For discrete deposition, the ‘‘gap-size
distribution’’ consists of delta function(s) representing available landing-site points, yielding exponential convergence for
large times. For continuum deposition, the argument of Pomeau [44] has suggested that the gap size — measured by the
length, x, into which a particle’s center can land — distribution, g (x), in 1D at large times is such that only the gaps that can
fit a single particle dominate the dynamics. A further assumption of Pomeau [44] that g (x) — defined such that g (x) dx is
the number of gaps of length between x and x+ dx per unit length of the 1D line — is finite, non-singular at x = 0, yields the
1/t convergence.

Swendsen [45] extended this argument to more than 1D; see also [4,6] for arguments on how the continuum limit is
obtained from discrete deposition of decreasing ‘‘mesh.’’ In higher dimensions, particle shapes, rotational freedom vs. fixed
orientation, and other ‘‘degrees of freedom’’ in particle positioning, as well as substrate patterning can all affect the approach
to jamming. Specifically, this argument [45] for fixed-orientation hypercubes depositing on a continuous d-dimensional
‘‘substrate’’ suggests convergence to jamming according to ∼(ln t)d−1/t . This offers an interesting example of a deviation
from a purely power-law behavior. When substrate is patterned — which has been a topic of recent interest, there is
numerical evidence for both exponential and power-law convergence in 2D [10,11] for various geometries of the particles or
surface pattern. However, in some cases the form of the convergence in 2D could not be numerically classified as power-law
or exponential [10]. A recent study [9] of 1Dmodelswith ‘‘imprecise particle positioning’’— representedby apattern of lattice
landing sites broadened into intervals — has offered analytical arguments for both fast and slow convergence depending
on the model parameters. We note that, theoretical studies have also included extensions of the RSA model to allow
particle motion, detachment, and other dynamical effects, as well as surface heterogeneity, disorder, and non-uniformity,
e.g., [7,46–57].

In this work, we consider the model [9] illustrated in Fig. 1. Here a uniform flux of particles of length a reaches landing
regions on a linear 1D substrate, but particles can only attach if they do not overlap one or two earlier-deposited particles.
Substrate patterning is represented as follows: Particles can only be deposited if their centers fall within landing intervals
that are broadened sites of a lattice of spacing l. These intervals have length 0 ≤ w ≤ l, which extrapolates between
lattice (w = 0) and continuum (w = l) deposition. This model was introduced in [9], were analytical arguments were
presented for that, the convergence to jamming can be fast, exponential-type in some regions of the parameter space of
varying a/l vs. w/l, and it can be slow, power-law-type in other regions. Here we revisit a Pomeau-type argument and adapt
it for the present model. We then report a numerical study of convergence properties as the model parameters are varied.
There are regions in the parameter space of this model with the standard exponential, ∼e−const·t , or power-law, ∼1/t , 1D
convergences to jamming. However, ourmain finding in thiswork has been that, we also identified a segmentwith the∼1/t2
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