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a b s t r a c t

The dynamic behavior of structures established in flexible ground can be greatly influenced by soil–
structure interaction. The challenge with regard to soil–structure interaction is to model the nonlinear
behavior of soil in the vicinity of the foundation, including the boundary nonlinearity at the interface
and the radiation of energy into infinity simultaneously. In this study, a three-dimensional time-
domain formulation of perfectly matched discrete layers (PMDLs) is developed. It can be combined with
a detailed finite-element model of the near-field region surrounding the foundation. The developed PMDL
formulation can minimize the modeling region. A procedure to determine the parameters of the three-
dimensional PMDLs to model a layered half-space effectively and accurately is proposed. Green’s
functions are calculated in half-spaces with the developed method and found to agree well with existing
solutions. The developed PMDL formulation is applied to a nonlinear three-dimensional soil–structure
interaction analysis, confirming its capability.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the rapid progress in engineering and technology, built
structures such as long-span bridges and high-rise buildings are
becoming ever larger and taller. The demand for the construction
of safety–critical facilities such as nuclear power plants and large
liquid storage tanks is increasing. Facilities such as offshore wind
turbines and platforms are becoming larger and taller. These struc-
tures and facilities should be cost-effective and sufficiently safe at
the same time. To achieve these goals, apparently conflicting, we
must know very accurately the responses of these structures to
various types of loading. These loadings in many cases are dynamic
in nature. Among the many important factors that must be consid-
ered is the dynamic interaction between soil and structures. In par-
ticular, structures that are built in flexible soil can be affected
greatly due to the soil–structure interaction. Hence, the dynamic
behaviors of the system cannot be accurately predicted without
considering the soil–structure interaction [1].

The accurate modeling of soil–structure interaction is a great
challenge mainly due to two areas of difficulty related to mechan-
ical modeling. The first area involves material and boundary

nonlinearities in the soil and in the interface [2]. The second is
the accurate treatment of the radiation of energy into the infinite
boundary. The nonlinear behavior can be handled best by means
of finite element modeling in the time domain. On the other hand,
the radiation of energy in the layered half-space can be treated
rigorously in the frequency domain. However, nonlinear soil–
structure interaction analysis requires these two models be
combined in the time domain. Thus, the accuracy and efficiency
of a nonlinear soil–structure interaction analysis depend on
whether the radiation of energy can be modeled accurately and
efficiently in the time domain.

A typical example of a soil–structure interaction system is
shown in Fig. 1a. The structure is assumed to be founded in soil
modeled as a half-space. The half-space can be divided into the
near- and far-field regions as shown in Fig. 1a. The near-field region
can be defined as the soil region near the foundation where the
geometry and material properties are heterogeneous and the
responses are nonlinear. This region may be modeled best by finite
element method which can handle both material and boundary
nonlinearities. The far-field region is considered as the infinite soil
region where the layer geometry is regular, the material properties
are homogeneous, and the response is linearly elastic. A mathemat-
ical model of the far-field region should be able to radiate elastic
waves into infinity efficiently. Variousmodels have been developed
for this purpose. Typical examples are consistent transmitting
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boundaries [3], boundary element methods [4,5], infinite elements
[6], high-order non-reflecting boundary conditions (NRBCs) or
absorbing boundary conditions (ABCs) [7], and perfectly matched
layers (PMLs) [8,9]. For a nonlinear analysis, the far-field model
should be able to be combined easily and efficiently with the
near-field finite-element model in the time domain. Therefore the
model must be expressed by local temporal operators in the time
domain. Among the models mentioned above for the far-field
region, the consistent transmitting boundary, boundary element
methods, and infinite elements result in global temporal operators
that are expressed in convolution integral in the time domain.
However, the other models such as high-order ABCs and PMLs

can satisfy the requirement by adjusting their parameters. The
high-order ABCs can approximate accurately the exact dynamic
stiffness of an infinite domain with rational expressions that can
be implemented easily in the time domain using auxiliary variables.
Because of the rational approximation, the effects of computational
parameters in the high-order ABCs on their performance can be
revealed through mathematical manipulations [10]. On the other
hand, the PMLs are artificial absorbing-media based on complex-
coordinate stretching. They are much easier to implement than
the high-order ABCs. Besides, corners in the near-field region can
be treated without difficulty for the PMLs. However, it is difficult
in practical calculations to determine computational parameters
that will guarantee high accuracy [10]. Therefore, it is hard to deter-
mine which model is better between high-order ABCs and PMLs. It
depends on special requirements of a specific problem to be solved.

In this study, a newly developed high-order ABC based on
continued-fraction approximation for a vector wave equation is
developed in order to represent a far-field region of a half-space
[11,12]. It was shown that an element which has a length of h in
a direction normal to a boundary can be a perfect absorber for
waves with a wavenumber of �2i=h, where i is the imaginary num-
ber, when displacements in the element are assumed varying lin-
early and the mid-point integration rule is used for the
evaluation of element stiffness in the normal direction [12]. Since
a successive application of the elements leads to a continued-
fraction approximation of dynamic stiffness of a half-space, this
ABC is called as a continued-fraction absorbing boundary condition
(CFABC). In order to absorb propagating waves, the element must
have a purely imaginary thickness since the waves have real
wavenumbers in the propagating directions. This is similar to the
complex-coordinate stretching that is the basic idea of the PML.
Because of the underlying links between CFABC and PML [13],
the CFABC can be viewed as a particular version of PML. Thus,
the CFABC is also referred to as perfectly matched discrete layer
(PMDL) in the literature. The PMDL preserves the both advantages
of the high-order ABCs and PMLs which are mentioned above
[12,14–16] and has been applied successfully to various wave-
propagation problems: scalar wave propagation [11,14], dispersive
acoustic wave propagation [15], elastic wave propagation [16],
statics [17], wave propagation in anisotropic media [18,19], and
wave propagation in a discretized domain [20]. As shown in the
studies, the PMDL can be easily combined with domain-based
numerical approaches such as the finite element method or finite
difference method which are very powerful numerical methods
for various wave propagation problems. Also, the accuracy of PMDL
system can be improved to any desired degree simply by increas-
ing the number of elements in normal directions to boundaries.
Therefore, the PMDL is very effective and versatile for modeling
wave propagations in various unbounded domains. Recently, it
was applied to a two-dimensional soil–structure interaction anal-
ysis [21]. Specifically, the approach has been successfully applied
to nonlinear soil–structure interaction problems in a plane-strain
condition [22].

In this study, the PMDL system in plane strain [22] is extended
further to three-dimensional nonlinear soil–structure interaction
problems. A suite of three-dimensional PMDLs is developed,
verified and applied to three-dimensional nonlinear problems.
The dynamic stiffness from the three-dimensional PMDLs is
derived and the equation of motion for a three-dimensional
soil–structure interaction system is formulated in the time domain
in Section 2. Section 3 describes the procedure used to determine
the parameters of the three-dimensional PMDLs to represent a
layered half-space effectively and accurately. In Section 4, the
three-dimensional PMDLs are verified and applied to an
earthquake response analysis of a typical soil–structure interaction
system. The paper is summarized in Section 5.
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Fig. 1. Soil–structure interaction system in a half-space.
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