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h i g h l i g h t s

• The measure of network joint cost and measure of controllable robustness are defined.
• The effect of control inputs and edge capacity on the controllability of Erdős–Rényi and Scale-free networks in cascading failure is

studied.
• The change of controllability is apparently different in sparse and dense networks.
• Robustness of controllability will be stronger with less cost through increasing the number of input signals and edge capacity

appropriately.
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a b s t r a c t

It is demonstrated that controlling complex networks in practice needs more inputs
than that predicted by the structural controllability framework. Besides, considering the
networks usually faces to the external or internal failure, we define parameters to evaluate
the control cost and the variation of controllability after cascades, exploring the effect
of number of control inputs on the controllability for random networks and scale-free
networks in the process of cascading failure. For different topological networks, the results
show that the robustness of controllability will be stronger through allocating different
control inputs and edge capacity.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Complex network is a hot topic in recent decades, in which the nodes represent the individuals in real systems and
the links capture the interactions among individuals [1–4]. Much efforts have been focused on the evolving of network
structures and dynamics on complex networks, including traffic dynamics [5], synchronization [6], and evolutionary games
on networks [7,8]. The very recent interesting has turned to explore the control of complex networks, which is also the
ultimate goal of research about complex networks [9–12]. Then, an elementary step is understanding whether a system is
controllable. A dynamical system is controllable if it can be driven from any initial state to any desired state with external
inputs in finite time, according to the traditional control theory [13]. The nodes composed by external inputs are defined
as driver nodes. Then, a critical issue is to find the minimal number of driver nodes to realize the full control of complex
networks. A pioneer work of Liu et al. concludes that the minimal number of driver nodes to fully control the network is
determined by the degree distribution of network [9]. Meanwhile, fixing the driver nodes of a directed network can also be
transformed into the maximum matching. While the controllability of networks with arbitrary structures and link weights
can be predicted by exact controllability theory [12]. In addition, numerical controllability [14], target control [15], control
profiles [16] and other researches have also been explored [17–26].
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It is necessary for us to concern the robustness of complex networks, because the networks usually suffer from attacks,
that may be random or intentional, can lead to the failure of nodes and links [27–31]. Then, the redistribution of load may
spread the failure and causes cascading failures. A networked system, that needs less driver nodes to achieve full control
at the very beginning should increase the number of driver nodes to full control, when the system suffers from cascading
failure [32–35]. Here, we introduce the control cost, which is defined as the function of number of driver nodes before
cascading and tolerant parameter of edge capacity, exploring the controllability of networks in the process of cascading
failure. Simulation results show that, tolerant parameter and average degrees of networks can greatly impact the increment
of number of driver nodes. Networks with sparse or dense links exhibit strong robustness of controllability, because the
cascading failure is restrained. This paper is organized as follows: Section 2 presents the model, Section 3 demonstrates
numerical results, and the discussion is presented in Section 4.

2. Models

Loadmodel of cascading failure. Each link eij at step t in network is assigned load Bij(t), which is set as the total number
of shortest paths in network passing through the link eij, and Bij(0) is initial load. The capacity Cij that a link can handle the
maximum load is defined as the following [27]:

Cij = αBij(0), (1)

where α is the tolerant parameter. The link eij is failed as the load Bij(t) exceeding its capacity Cij, and it will be removed
from the networks. Then, the load of eij will redistribute.

Controllability of networks. The dynamical equation of a linear time-invariant system with N nodes can be described
as the following:

ẋ = Ax + Bu, (2)

where the vector x(t) = [x1(t), x2(t), . . . , xN(t)] is the state of N nodes at time t . A = (aij)N×N is the adjacent ma-
trix and input matrix B = (bij)N×M defines how the input signals are imposed to the nodes of networks. u(t) =

[u1(t), u2(t), . . . , uM(t)]T is the input vector. The system (A, B) defined by Eq. (2) is controllable if the controllability matrix
C = (B, AB, . . . , AN−1B) has full rank [36]. Liu et al. found that theminimal number of inputs or driver nodesND for a directed
network is determined by degree distribution, and determining the set of driver nodes can be transformed into maximum
matching [9]. At the beginning, ND nodes are selected by structural controllability and NI − ND nodes are randomly chosen
as the driver nodes. We define a parameter θ to capture the function of NI and ND:

nI =
NI

N
=

θND

N
= θnD, (3)

where nD is the fraction of minimum driver nodes. The control cost is defined as: T = αenI . Once the link with largest load is
removed, the minimum fraction of driver nodes to full control the network increases caused by cascading failure. We define
Φ as the network robustness of controllability, to characterize the increment of control inputs before and after the cascading
failure:

Φ =
N f

D − NI

N
. (4)

3. Results

We explore the network controllability in the process of cascading failure, as shown in Fig. 1. The random networks
with lower (sparse) or large enough (dense) average degrees ⟨k⟩ show stronger robustness of controllability, where the
increments of number of driver nodes are less. The removal of linkwith largest load in sparse network renders some nodes to
beunreachable, then the loads of links are reduced,which sustains the spreading of failure. Hence, controllability of networks
after the cascading failure is similar to that before failure. While for random networks with moderate average degrees,
increments of number of driver nodes show a sharp rising at the critical time step T = 4, since the failure is widely spread
and large amount of links are failed. Then, the number of driver node nD should be increased to full control the networks.
Fig. 1(b) shows controllability of scale-free networks with different average degrees in the process of cascading failure. The
dense scale-free network, i.e. ⟨k⟩ = 20 exhibits weak robustness of controllability, because of degree heterogeneity. Fig. 1
demonstrates that, increments of driver nodes of network controllability is closely related with the amount of failed links
in cascading failure.

However, with the consideration of energy consumption and control trajectory, it usually needs more external inputs to
full control the whole system, in which the number of driver nodes is larger than the minimal driver nodes ND. Therefore,
based on the control cost T before and after cascades, we explore the change of controllability in cascading failure. As shown
in Fig. 2, we illustrate the change of controllability with different control cost in random networks with varied average
degrees. In Fig. 2, with the lower ⟨k⟩, the change of controllability is almost the same with the increasing of edge capacity
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