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HIGHLIGHTS

e Asymptotic Green’s functions for time-fractional diffusion equation are derived.
e Time-value for the corresponding short and long-time subdivision is defined.
e Initial-value problem for the long-time asymptotic solution is resolved.
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the anomalous diffusion problem on a semi-infinite rod is demonstrated. The initial value
problem for longtime solution of the time-fractional diffusion equation by Green’s function
approach is resolved.
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1. Introduction

Diffusive transport kinetics is usually described by the fundamental diffusion equation based on the second Fick’s
law, which, in fact, is a mathematical interpretation of mass conservation law. If diffusion process exhibits memory
effect [1], which is typical for fractal structure [2], Fick’s law is no more applicable because mean square displacement
of diffusing species is not always linear with respect to time [3]. Description of this unusual diffusion may be represented
by replacement of the corresponding equation with derivative of non-integer order in the range between zero and two. The
corresponding equation is called time-fractional diffusion equation. One-dimensional time-fractional diffusion equation is
given as follows [4]:
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where C is the linear concentration of diffusing species, mole/cm; K denotes fractional diffusion coefficient in porous media,
cm?/s%; t is time, s; x is coordinate, cm; « is temporal fractional order. Fractional derivative is used in Caputo sense [5],
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because only for Caputo derivative holds mass conservation principle [6]:
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m=1if0 <a <landm =2if1 < a < 2.For0 < « < 1 holds sub-diffusive regime of transport, which is slower
comparably to standard Fickian diffusion [7], and for 1 < o < 2 fast super-diffusion is considered [8]. For « = 1 Eq. (1)
reduces to standard diffusion equation:

¢ _ ¢ 9%C 3)
at o ax2
In the present paper we introduce the asymptotic Greens’ functions, based on Fourier-Laplace transforms and Mittag-
Leffler function approximations, and apply them to anomalous diffusion problem.

2. Derivation of the asymptotic Green’s functions
Applying spatial Fourier and temporal Laplace transform to Eq. (1) gives space-time fractional diffusion equation
expressed as follows [9,10]:
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Inverse Laplace transform of Eq. (4) leads to [10]:
C(k,t) =Eq (K- (—i-k)*-t%) (5)

where E, denotes special case of one-parameter Mittag-Leffler function [11]:
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Mittag-Leffler function is approximated for small and large values of its argument according to the following expression
[3,12]:
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where t; is given by:
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Applying inverse Fourier transform to Eq. (7) gives asymptotic Green’s functions for short and long times respectively:
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Here the upper index O corresponds to Green'’s function for short time, and the upper index oo corresponds to Green'’s
function for long time. In Egs. (8)-(8a) t* is given by:
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Eqgs. (8)-(9) arevalid fort > 0,and 0 < o < 2. For o = 1 Eqgs. (8)-(8a) reduce to Green'’s function for standard diffusion
equation, because Eq(z) = exp[z] [11].
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